Skip to main content
Log in

A Taxonomy of Bio-Inspired Cyber Security Approaches: Existing Techniques and Future Directions

  • Review Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

After decades of deploying cyber security systems, it is a well-known fact that the existing cyber infrastructure has numerous inherent limitations that make the maintenance of the current network security devices un-scalable and provide the adversary with asymmetric advantages. These limitations include: (1) difficulty in obtaining the global knowledge due to the lack of mutual interactions among network devices, (2) no sense of self-awareness, (3) absence of self-correcting/organizing mechanisms; for instance, error-prone and time-consuming manual configuration, which is not effective in real-time attack mitigation, (4) disability to diagnose mis-configuration and conflict resolution due to multiparty management of security infrastructure. Biological systems, on the other hand, have intrinsic appealing characteristics as a result of billions of years of evolution, such as adaptivity to varying environmental conditions, inherent resiliency to failures and damages, successful and collaborative operation on the basis of a limited set of rules with global intelligence (which is larger than superposition of individuals). The aim of this survey is to review the existing bio-inspired approaches that have been used toward addressing the aforementioned issues and evaluate them accordingly. We also aim to provide information about the intrinsic potential of existing bio-inspired techniques which has not been explored yet, for improving cyber security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Camazine, S.; Franks, N.R.; Sneyd, J.; Bonabeau, E.; Deneubourg, J.-L.; Theraula, G.: Self-organization in Biological Systems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  2. Bonabeau, Eric; Dorigo, Marco; Theraulaz, Guy: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press Inc, New York (1999)

    MATH  Google Scholar 

  3. Akyildiz, I.F.; Akan, Ö.B.; Chen, C.; Fang, J.; Weilian, S.: Interplanetary internet: state-of-the-art and research challenges. Comput. Netw. 43(2), 75–112 (2003)

    Article  Google Scholar 

  4. Dressler, F.; Akan, O.B.: A survey on bio-inspired networking. Comput. Netw. 54(6), 881–900 (2010)

    Article  Google Scholar 

  5. Dressler, F.; Akan, O.B.: Bio-inspired networking: from theory to practice. IEEE Commun. Mag. 48(11), 176–183 (2010)

    Article  Google Scholar 

  6. Dressler, Falko: Self-organization in Sensor and Actor Networks. Wiley, New York (2008)

    Google Scholar 

  7. Darabos, C.; Di Cunto, F.; Tomassini, M.; Moore, J.H.; Provero, P.; Giacobini, M.: Additive functions in boolean models of gene regulatory network modules. PLoS ONE 6(11), e25110 (2011)

    Article  Google Scholar 

  8. MacNeil, L.T.; Walhout, A.J.M.: Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome Res. 21(5), 645–657 (2011)

    Article  Google Scholar 

  9. Alahakoon, D.; Halgamuge, S.K.; Srinivasan, B.: Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans. Neural Netw. 11(3), 601–614 (2000)

    Article  Google Scholar 

  10. The new normal: 200-400 gbps ddos attacks. Kerbs-on-Security, (Feb 2014).

  11. Ranjan, S.; Swaminathan, R.; Uysal, M.; Knightly, E.: Ddos-resilient scheduling to counter application layer attacks under imperfect detection. In: INFOCOM 2006 25th IEEE International Conference on Computer Communications. Proceedings, pp. 1–13 (2006)

  12. Zhou, W.; Jia, W.; Wen, S.; Xiang, Y.; Zhou, W.: Detection and defense of application-layer DDoS attacks in backbone web traffic. Future Gener. Comput. Syst. 38, 36–46 (2014)

    Article  Google Scholar 

  13. Kang, Min Suk; Lee, Soo Bum; Gligor, Virgil D.: The crossfire attack. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pp. 127–141, Washington, DC, USA. IEEE Computer Society (2013)

  14. Studer, A.; Perrig, A.: The coremelt attack. In: ESORICS, 2009: 14th European Symposium on Research in Computer Security, Saint-Malo, France, September 21–23, 2009. Proceedings, pp. 37–52. Springer, Berlin Heidelberg (2009)

  15. Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3), 49–51 (2011)

    Article  Google Scholar 

  16. Chen, T.M.; Abu-Nimeh, S.: Lessons from stuxnet. Computer 44(4), 91–93 (2011)

    Article  Google Scholar 

  17. Moore, D.; Shannon, C.; Voelker, G. M.; Savage, S.: Internet quarantine: requirements for containing self-propagating code. In: IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), vol. 3, pp. 1901–1910 (2003)

  18. https://www.scmagazine.com/new-ransomware-has-worm-like-ability/article/528210/

  19. https://www.elsevier.com/solutions/scopus/features/api

  20. https://ropensci.org/packages/

  21. https://github.com/akshaynagpal/rgscholar

  22. https://cran.r-project.org/web/packages/rismed/index.html

  23. Beni, G.; Wang, J.: Swarm intelligence in cellular robotic systems. In: NATO Advanced Workshop on Robotics and Biological Systems (1989)

  24. Farooq, M.; MyiLibrary: Bee-Inspired Protocol Engineering: From Nature to Networks. Natural computing series. Springer, Berlin (2009)

    Google Scholar 

  25. Dorigo, M.; Di Caro, G.: New ideas in optimization. The Ant Colony Optimization Meta-heuristic, pp. 11–32. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999)

  26. Dorigo, M.; Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate (2004)

    MATH  Google Scholar 

  27. Dorigo, M.; Maniezzo, V.; Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  28. Dorigo, M.; Di Caro, G.; Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999). https://doi.org/10.1162/106454699568728

    Article  Google Scholar 

  29. Wilson, E.O.; Pavan, M.: Glandular sources and specificity of some chemical releasers of social behavior in dolichoderine ants. Psyche 66(4), 70–76 (1959)

    Article  Google Scholar 

  30. Abadi, M.; Jalili, S.: An ant colony optimization algorithm for network vulnerability analysis. Iran. J. Electr. Electron. Eng. 2(3), 106–120 (2006)

    Google Scholar 

  31. Sheyner, O.; Haines, J.; Jha, S.; Lippmann, R.; Wing, J.M.: Automated generation and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security and Privacy, pp 273–284 (2002)

  32. Jha, S.; Sheyner, O.; Wing, J.M.: Minimization and reliability analyses of attack graphs. Technical report, DTIC Document (2002)

  33. Kolias, C.; Kambourakis, G.; Maragoudakis, M.: Swarm intelligence in intrusion detection: a survey. Comput. Secur. 30(8), 625–642 (2011)

    Article  Google Scholar 

  34. Lianying, Z.; Fengyu, L.: A swarm-intelligence-based intrusion detection technique. IJCSNS Int. J. Comput. Sci. Netw. Secur. 6(7), 146e50 (2006)

    Google Scholar 

  35. Fenet, S.; Hassas, S.: A distributed intrusion detection and response system based on mobile autonomous agents using social insects communication paradigm. Electron. Notes Theor. Comput. Sci. 63, 41–58 (2002)

    Article  Google Scholar 

  36. Foukia, N.: Idream: intrusion detection and response executed with agent mobility architecture and implementation. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 264–270. ACM (2005)

  37. Banerjee, S.; Grosan, C.; Abraham, A.: Ideas: intrusion detection based on emotional ants for sensors. In: Proceedings of 5th International Conference on Intelligent Systems Design and Applications, 2005. ISDA’05, pp. 344–349. IEEE (2005)

  38. Fink, G.A.; Haack, J.N.; McKinnon, A.D.; Fulp, E.W.: Defense on the move: ant-based cyber defense. IEEE Secur. Priv. 12(2), 36–43 (2014)

    Article  Google Scholar 

  39. Haack, J.N.; Fink, G.A.; Maiden, W.M.; McKinnon, A.D.; Templeton, S.J.; Fulp, E.W.: Ant-based cyber security. In: 2011 Eighth International Conference on Information Technology: New Generations (ITNG), pp. 918–926 (2011)

  40. Soroush, E.; Abadeh, M.S.; Habibi, J.: A boosting ant-colony optimization algorithm for computer intrusion detection. In: Proceedings of the 2006 International Symposium on Frontiers in Networking with Applications (FINA 2006) (2006)

  41. Parpinelli, R.S.; Lopes, H.S.; Freitas, A.A.: Data mining with an ant colony optimization algorithm. IEEE Trans. Evolut. Comput. 6(4), 321–332 (2002)

    Article  Google Scholar 

  42. He, J.; Long, D.: An improved ant-based classifier for intrusion detection. In: Third International Conference on Natural Computation, 2007. ICNC 2007, vol. 4, pp. 819–823. IEEE (2007)

  43. Aljarah, I.; Ludwig, S.A.: Mapreduce intrusion detection system based on a particle swarm optimization clustering algorithm. In: 2013 IEEE congress on evolutionary computation (CEC), pp. 955–962 (2013)

  44. Jain, A.K.; Murty, M.N.; Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  45. Duran, B.S.; Odell, P.L.: Cluster Analysis: A Survey, vol. 100. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  46. Aggarwal, C.C.: Outlier analysis. Springer, New York (2013)

    Book  Google Scholar 

  47. Boryczka, U.: Ant clustering algorithm. Intell. Inf. Syst. 1998, 455–458 (2008)

    Google Scholar 

  48. Bin, W.; Zhongzhi, S.: A clustering algorithm based on swarm intelligence. In: 2001 International Conferences on Info-tech and Info-net, 2001. Proceedings. ICII 2001-Beijing, vol 3, pp. 58–66. IEEE (2001)

  49. Rajeswari, L.P.; Kannan, A.; Baskaran, R.: An escalated approach to ant colony clustering algorithm for intrusion detection system. In: Distributed Computing and Networking, pp. 393–400. Springer (2008)

  50. Sobh, T.S.; Mostafa, W.M.: A cooperative immunological approach for detecting network anomaly. Appl. Soft Comput. 11(1), 1275–1283 (2011)

    Article  Google Scholar 

  51. Twycross, J.P.: Integrated innate and adaptive artificial immune systems applied to process anomaly detection. Citeseer (2007)

  52. Kotov, V.D.; Vasilyev, V.: Immune model based approach for network intrusion detection. In: Proceedings of the 3rd International Conference on Security of Information and Networks, SIN ’10, pp. 233–237, New York, NY, USA. ACM (2010)

  53. Hang, X.; Dai, H.: An extended negative selection algorithm for anomaly detection. In: 8th Pacific-Asia Conference Advances in Knowledge Discovery and Data Mining, pp. 245–254. Springer, Berlin, Heidelberg (2004)

    Chapter  Google Scholar 

  54. Dasgupta, D.; Majumdar N.S.: Anomaly detection in multidimensional data using negative selection algorithm. In: WCCI, pp. 1039–1044. IEEE (2002)

  55. Liao, X.; Lochhead, P.; Nishihara, R.; Morikawa, T.; Kuchiba, A.; Mai Yamauchi, Y.; Imamura, Z.R.; Qian, Y.B.; Shima, K.; Sun, R.; Nosho, K.; Meyerhardt, J.A.; Giovannucci, E.; Fuchs, C.S.; Chan, A.T.; Ogino, S.: Aspirin Use, Tumor PIK3CA Mutation, and Colorectal-Cancer Survival. N. Engl. J. Med. 367(17), 1596–1606 (2012)

    Article  Google Scholar 

  56. Williams, T.N.; Mwangi, T.W.; Roberts, D.J.; Alexander, N.D.; Weatherall, D.J.; Wambua, S.; Kortok, M.; Snow, R.W.; Marsh, K.: An immune basis for malaria protection by the sickle cell trait. PLoS Med 2(5), e128 (2005)

    Article  Google Scholar 

  57. Garber, L.: Denial-of-service attacks rip the internet. Computer 33(4), 12–17 (2000)

    Article  Google Scholar 

  58. Geva, M.; Herzberg, A.; Gev, Y.: Bandwidth distributed denial of service: attacks and defenses. IEEE Secur. Priv. 1, 54–61 (2014)

    Article  Google Scholar 

  59. Stavrou, A.; Keromytis, A.D.; Nieh, J.; Misra, V.; Rubenstein, D.: Move: an end-to-end solution to network denial of service. In: Proceedings of the Internet Society (ISOC) Symposium on Network and Distributed Systems Security (SNDSS), San Diego, CA (2005)

  60. Wang, H.; Jia, Q.; Fleck, D.; Powell, W.; Li, F.; Stavrou, A.: A moving target DDoS defense mechanism. Comput. Commun. 46, 10–21 (2014). https://www.sciencedirect.com/science/article/pii/S0140366414000954

    Article  Google Scholar 

  61. Jia, Q.; Wang, H.; Fleck, D.; Li, F.; Stavrou, A.; Powell, W.: Catch me if you can: a cloud-enabled ddos defense. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 264–275 (2014)

  62. Wood, P.; Gutierrez, C.N.; Bagchi, S.: Denial of service elusion (dose): keeping clients connected for less. In: 34th IEEE Symposium on Reliable Distributed Systems, SRDS 2015, Montreal, QC, Canada, September 28–October 1, 2015, pp. 94–103 (2015)

  63. Rauf, U.; Gillani, F.; Al-Shaer, E.; Halappanavar, M.; Chatterjee, S.; Oehmen, C.: Formal approach for resilient reachability based on end-system route agility. In: Proceedings of the 2016 ACM Workshop on Moving Target Defense, MTD’16, pp. 117–127, New York, NY, USA. ACM (2016)

  64. Duan, Qi; Al-Shaer, E.; Jafarian, H.: Efficient random route mutation considering flow and network constraints. In: 2013 IEEE Conference on Communications and Network Security (CNS), pp. 260–268 (2013)

  65. Gillani, F.; Al-shaer, E.; Lo, S.; Duan, Q.; Ammar, M.; Zegura, E.: Agile virtualized infrastructure to proactively defend against cyber attacks. In: INFOCOM 2015, vol. 1, pp. 270–280 (2015)

  66. Jafarian, J.H.; Al-Shaer, E.; Duan, Q.: Openflow random host mutation: transparent moving target defense using software defined networking. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, HotSDN, pp. 127–132, New York, NY, USA. ACM (2012)

  67. Jafarian, J.H.; Al-Shaer, E.; Duan, Q.: Adversary-aware ip address randomization for proactive agility against sophisticated attackers. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 738–746 (2015)

  68. MacFarland, D.C.; Shue, C.A.: The sdn shuffle: creating a moving-target defense using host-based software-defined networking. In: Proceedings of the Second ACM Workshop on Moving Target Defense, MTD ’15, pp. 37–41, New York, NY, USA. ACM (2015)

  69. Rauf, U.; Siddique, U.; Ahmad, J.; Niazi, U.: Formal modeling and analysis of biological regulatory networks using spin. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 304–308 (2011)

  70. Leonor Mateus Ferreira; Cystic fibrosis statistics, cystic fibrosis news today (2017). https://cysticfibrosisnewstoday.com/cysticfibrosis-statistics/

  71. Rauf, U.; Sameen, S.; Cerone, A.: Formal analysis of oscillatory behaviors in biological regulatory networks: an alternative approach. Electron. Notes Theor. Comput. Sci. 299, 85–100 (2013)

    Article  MathSciNet  Google Scholar 

  72. Dressler, F.: Self-organized network security facilities based on bio-inspired promoters and inhibitors. In: Advances in Biologically Inspired Information Systems, pp. 81–98. Springer (2007)

  73. Framework for Improving Critical Infrastructure Cybersecurity. National Institute of Standards and Technology, USA (2014)

  74. International Standards Organization ISO/IEC 27005: 2008. Information Technology-Security Techniques-Information Security Risk Management. International Standards Organization, Geneva, Switzerland (2008)

  75. Davis, M.; Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)

    Article  MathSciNet  Google Scholar 

  76. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    MATH  Google Scholar 

  77. Rossi, F.; van Beek, P.; Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

    MATH  Google Scholar 

  78. https://www.planet-lab.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Rauf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauf, U. A Taxonomy of Bio-Inspired Cyber Security Approaches: Existing Techniques and Future Directions. Arab J Sci Eng 43, 6693–6708 (2018). https://doi.org/10.1007/s13369-018-3117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3117-2

Navigation