Skip to main content

Towards a Systematic View on Cybersecurity Ecology

  • Chapter
  • First Online:
Combatting Cybercrime and Cyberterrorism

Abstract

Current network security systems are progressively showing their limitations. One credible estimate suggests that only about 45 % of new threats are detected. Therefore it is vital to find a new direction that cybersecurity development should follow. We argue that the next generation of cybersecurity systems should seek inspiration in nature. This approach has been used before in the first generation of cybersecurity systems; however, since then cyber threats and environment have evolved significantly, and accordingly the first-generation systems have lost their effectiveness. A next generation of bio-inspired cybersecurity research is emerging, but progress is hindered by the lack of a framework for mapping biological security systems to their cyber analogies. In this paper, using terminology and concepts from biology, we describe a cybersecurity ecology and a framework that may be used to systematically research and develop bio-inspired cybersecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yardon, D.: Symantec develops new attack on cyberhacking. Wall Street J. (2014). http://www.wsj.com/articles/SB10001424052702303417104579542140235850578

  2. Mazurczyk, W., Rzeszutko, E.: Security - a perpetual war: lessons from nature. IEEE IT Prof. 17(1), 16–22 (2015)

    Article  Google Scholar 

  3. Hofmeyr, S.A.: An immunological model of distributed detection and its application to computer security. Ph.D. thesis, University of New Mexico (1999)

    Google Scholar 

  4. Ford, R., Bush, M., Bulatov, A.: Predation and the cost of replication: new approaches to malware prevention? Comput. Secur. 25(4), 257–264 (2006)

    Article  Google Scholar 

  5. Crandall, J.R., Ladau, J., Ensafi, R., Shebaro, B., Forrest, S.: The ecology of malware. Proceedings of the New Security Paradigms Workshop (NSPW 2008), Lake Tahoe, CA, USA, pp. 99–106 (2008)

    Google Scholar 

  6. Okhravi, H., Hobson, T., Bigelow, D., Streilein, W.: Finding focus in the blur of moving-target techniques. IEEE Secur. Priv. 12(2), 16–26 (2014)

    Article  Google Scholar 

  7. de Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Genetic and Evolutionary Computation Conference (GECCO), Las Vegas, USA, pp. 36–37 (2000)

    Google Scholar 

  8. Greensmith, J.: The dendritic cell algorithm. Ph.D. thesis, University of Nottingham, UK (2007)

    Google Scholar 

  9. Hart, E., Timmis, J.: Application areas of AIS: the past, the present and the future. Appl. Soft Comput. 8, 191–201 (2008)

    Article  Google Scholar 

  10. Fink, G.A., Haack, J.N., McKinnon, A.D., Fulp, E.W.: Defense on the move: ant-based cyber defense. IEEE Secur. Priv. 12(2), 36–43 (2014)

    Article  Google Scholar 

  11. Gorman, S.P., Kulkarni, R.G., Schintler, L.A., Stough, R.R.: A predator prey approach to the network structure of cyberspace. In Proceedings of the Winter International Synposium on Information and Communication Technologies (WISICT 2004), pp. 1–6. Trinity College Dublin (2004)

    Google Scholar 

  12. Kephart, J., White, S.: Measuring and modeling computer virus prevalence. In: Proceedings of the 1993 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, California, May 24-25, pp. 2–14 (1993)

    Google Scholar 

  13. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001)

    Article  Google Scholar 

  14. Moghaddam, H.M., Li, B., Derakhshani, M., Goldberg, I.: SkypeMorph: protocol obfuscation for Tor bridges. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS 2012), pp. 97–108. ACM, New York (2012)

    Google Scholar 

  15. Ruxton, G.D., Sherratt, T.N., Speed, M.P.: Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  16. Zielinska, E., Mazurczyk, W., Szczypiorski, K.: Trends in steganography. Commun. ACM 57(2), 86–95 (2014)

    Article  Google Scholar 

  17. Stenseth, N.C., Smith, J.M.: Coevolution in ecosystems: red queen evolution or stasis? Evolution 38(4), 870–880 (1984)

    Article  Google Scholar 

  18. Moore, P.S., Boschoff, C., Weiss, R.A., Chang, Y.: Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274(5293), 1739–1744 (1996)

    Article  Google Scholar 

  19. How, M.J., Zanker, J.M.: Motion camouflage induced by zebra stripes. Zoology 117(3), 163–170 (2014)

    Article  Google Scholar 

  20. Delves, P.J., Martin, S.J., Burton, D.R., Roitt, I.M.: Essential Immunology. Wiley-Blackwell, Hoboken (2011)

    Google Scholar 

  21. Krebs, C.J.: Ecology: The Experimental Analysis of Distribution and Abundance. Benjamin Cummings, San Francisco (2009)

    Google Scholar 

  22. Rooney, N., McCann, K.S.: Integrating food web diversity, structure and stability. Trends Ecol. Evol. 27(10), 40–46 (2012)

    Article  Google Scholar 

  23. Ings, T.C., et al.: Review: ecological networks - beyond food webs. J. Anim. Ecol. 78(1), 253–269 (2009)

    Article  Google Scholar 

  24. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211(4489), 1390–1396 (1981)

    Article  Google Scholar 

  25. Riolo, R.L., Cohen, M.D., Axelrod, R.: Evolution of cooperation without reciprocity. Nature 414, 441–443 (2001)

    Article  Google Scholar 

  26. Andersson, M.: Sexual Selection. Princeton University Press, Princeton (1995)

    Google Scholar 

  27. Neff, B.D., Pitcher, T.E.: Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol. Ecol. 14(1), 19–38 (2005)

    Article  Google Scholar 

  28. Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K., Relyea, R.A.: Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20(12), 685–692 (2005)

    Article  Google Scholar 

  29. Whorf, B.L.: Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf. MIT Press, Cambridge (1956). Carroll J.B. (ed.)

    Google Scholar 

  30. Raffel, R., Martin, L.B., Rohr, J.R.: Parasites as predators: unifying natural enemy ecology. Trends Ecol. Evol. 23(11), 610–618 (2008)

    Article  Google Scholar 

  31. Royama, T.: Comparative study of models for predation and parasitism. Res. Popul. Ecol. 13(Supp 1), 1–91 (1971)

    Article  Google Scholar 

  32. Benard, M.F.: Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004)

    Article  Google Scholar 

  33. Sorek, R., Kunin, V., Hugenholtz, P.: CRISPR - a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 6, 181–186 (2008)

    Article  Google Scholar 

  34. Altizer, S., Dobson, A., Hosseini, P., Hudson, P., Pascual, M., Rohani, P.: Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006)

    Article  Google Scholar 

  35. Bruno, J.F., Stachowicz, J.J., Bertness, M.D.: Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18(3), 119–125 (2003)

    Article  Google Scholar 

  36. Holling, C.S.: Principles of insect predation. Annu. Rev. Entomol. 6, 163–182 (1961)

    Article  Google Scholar 

  37. Ivlev, V.S.: Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven (1955)

    Google Scholar 

  38. Watt, K.E.F.: Mathematical models for use in insect control. Can. Entomol. Suppl. 19, 1–62 (1961)

    Article  Google Scholar 

  39. Franks, D.W.: Modelling the Evolution of Warning Signals and Mimicry with Individual-Based Simulations. University of Leeds, Leeds (2005)

    Google Scholar 

  40. Pfennig, D.W., Harcombe, W.R., Pfennig, K.S.: Frequency-dependent Batesian mimicry. Nature 410(323), 134–136 (2001)

    Google Scholar 

  41. Futuyma, D.: Evolution. Sinauer Associates, Sunderland (2015)

    Google Scholar 

  42. Neuchauser, C., Fargione, J.E.: A mutualism-parasitism continuum model and its application to plant-mycorrhizae interactions. Ecol. Model. 177(3–4), 337–352 (2004)

    Article  Google Scholar 

  43. Cheney, K.L., Cote, I.M.: Mutualism or parasitism? The variable outcome of cleaning symbioses. Proc. Royal Soc. B 1(2), 12–19 (2005)

    Google Scholar 

  44. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  Google Scholar 

  45. Prokop, Z.M., Michalczyk, L., Drobniak, S.M., Herdegen, M., Radwan, J.: Meta-analysis suggests choosy females get sexy sons more than “good genes". Evolution 66(9), 2665–2673 (2010)

    Article  Google Scholar 

  46. Drobniak, S.M., Arct, A., Cichon, M.: Extrapair paternity and genetic similarity - we are not quite there yet: a response to comments on Arct et al. Behav. Ecol. 26(4), 973–974 (2015)

    Article  Google Scholar 

  47. Kokko, H., Jennions, M.D., Brooks, R.: Unifying and testing models of sexual selection. Ann. Rev. Ecol. Evol. Syst. 37, 43–66 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Mazurczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mazurczyk, W., Drobniak, S., Moore, S. (2016). Towards a Systematic View on Cybersecurity Ecology. In: Akhgar, B., Brewster, B. (eds) Combatting Cybercrime and Cyberterrorism. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-38930-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38930-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38929-5

  • Online ISBN: 978-3-319-38930-1

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics