Skip to main content
Log in

Biodiesel Production by Direct Transesterification Process via Sequential Use of Acid–Base Catalysis

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

It is a well-known fact that energy consumption is rapidly increasing due to population growth, higher standard of living and increased production. A significant amount of energy resources are being consumed by the transportation sector leading to fast depletion of fossil fuels and environmental pollution. Biodiesel is one of the technically and economically feasible options to tackle the aforesaid problems. Biodiesel seems to be a replacement to the diesel and can be commonly produced by two-step esterification–transesterification process. In the current research, single-step process of direct transesterification method is developed and is compared with conventional two-step esterification–transesterification method. The fuel properties of biodiesel produced by these two methods have been studied. The results revealed that fuel properties of biodiesel like calorific value, kinematic viscosity, flash point, density, acid value remained similar in both methods. However, the new method developed is superior with respect to reduced reaction time, lower acid value and increased biodiesel yield. The acid value of biodiesel obtained by single-step and two-step method was found to be 0.1 and 0.25 mg KOH/g, respectively. The new method was able to reduce the reaction time from 5 to 2 h. Yield of biodiesel was increased from 2 to 5% indicating advantages of new method compared to two-step conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPPO:

Crude Pongamia pinnata oil

PPME:

Pongamia pinnata methyl esters

JCME:

Jatropha curcas methyl esters

CIME:

Calophyllum inophyllum methyl esters

CPME:

Ceiba pentandra methyl esters

NSME:

Nigella sativa methyl esters

DT:

Direct transesterification

ET:

Esterification–transesterification

References

  1. Singh, S.P.; Singh, D.: Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew. Sustain. Energy Rev. 14(1), 200–216 (2010). https://doi.org/10.1016/j.rser.2009.07.017

    Article  Google Scholar 

  2. Borugadda, V.B.; Goud, V.V.: Biodiesel production from renewable feedstocks: status and opportunities. Renew. Sustain. Energy Rev. 16(7), 4763–4784 (2012)

    Article  Google Scholar 

  3. Khan, T.M.Y.; Atabani, A.E.; Badruddin, I.A.; Badarudin, A.; Khayoon, M.S.; Triwahyono, S.: Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renew. Sustain. Energy Rev. 37, 840–851 (2014). https://doi.org/10.1016/j.rser.2014.05.064

    Article  Google Scholar 

  4. Pal, K.D.; Prakash, A.: New cost-effective method for conversion of vegetable oil to biodiesel. Bioresour. Technol. 121(0), 13–18 (2012). https://doi.org/10.1016/j.biortech.2012.06.106

    Article  Google Scholar 

  5. Thanh, L.T.; Okitsu, K.; Sadanaga, Y.; Takenaka, N.; Maeda, Y.; Bandow, H.: A new co-solvent method for the green production of biodiesel fuel—optimization and practical application. Fuel 103, 742–748 (2013). https://doi.org/10.1016/j.fuel.2012.09.029

    Article  Google Scholar 

  6. Alhassan, Y.; Kumar, N.; Bugaje, I.M.; Pali, H.S.; Kathkar, P.: Co-solvents transesterification of cotton seed oil into biodiesel: effects of reaction conditions on quality of fatty acids methyl esters. Energy Convers. Manag. 84(0), 640–648 (2014). https://doi.org/10.1016/j.enconman.2014.04.080

    Article  Google Scholar 

  7. Farobie, O.; Yanagida, T.; Matsumura, Y.: New approach of catalyst-free biodiesel production from canola oil in supercritical tert-butyl methyl ether (MTBE). Fuel 135(0), 172–181 (2014). https://doi.org/10.1016/j.fuel.2014.06.049

    Article  Google Scholar 

  8. Dawodu, F.A.; Ayodele, O.O.; Xin, J.; Zhang, S.: Dimethyl carbonate mediated production of biodiesel at different reaction temperatures. Renew. Energy 68(0), 581–587 (2014). https://doi.org/10.1016/j.renene.2014.02.036

    Article  Google Scholar 

  9. Tan, K.T.; Lee, K.T.; Mohamed, A.R.: A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: an optimization study via response surface methodology. Bioresour. Technol. 101(3), 965–969 (2010). https://doi.org/10.1016/j.biortech.2009.09.004

    Article  Google Scholar 

  10. Shi, H.; Bao, Z.: Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction. Bioresour. Technol. 99(18), 9025–9028 (2008). https://doi.org/10.1016/j.biortech.2008.04.025

    Article  Google Scholar 

  11. Wen, L.; Wang, Y.; Lu, D.; Hu, S.; Han, H.: Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89(9), 2267–2271 (2010). https://doi.org/10.1016/j.fuel.2010.01.028

    Article  Google Scholar 

  12. Hayyan, A.; Hashim, M.A.; Hayyan, M.; Mjalli, F.S.; AlNashef, I.M.: A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. J. Clean. Prod. 65(0), 246–251 (2014). https://doi.org/10.1016/j.jclepro.2013.08.031

    Article  Google Scholar 

  13. Hu, S.; Wen, L.; Wang, Y.; Zheng, X.; Han, H.: Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst. Bioresour. Technol. 123(0), 413–418 (2012). https://doi.org/10.1016/j.biortech.2012.05.143

    Article  Google Scholar 

  14. Sharma, Y.; Singh, B.; Upadhyay, S.N.: Advancements in development and characterization of biodiesel: a review. Fuel 87(12), 2355–2373 (2008)

    Article  Google Scholar 

  15. Ginting, M.S.A.; Azizan, M.T.; Yusup, S.: Alkaline in situ ethanolysis of Jatropha curcas. Fuel 93, 82–85 (2012)

    Article  Google Scholar 

  16. Shi, W.; Li, J.; He, B.; Yan, F.; Cui, Z.; Wu, K.; Lin, L.; Qian, X.; Cheng, Y.: Biodiesel production from waste chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide. Bioresour. Technol. 139, 316–322 (2013)

    Article  Google Scholar 

  17. Chen, K.-S.; Lin, Y.-C.; Hsu, K.-H.; Wang, H.-K.: Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 38(1), 151–156 (2012)

    Article  Google Scholar 

  18. Lin, Y.-C.; Hsu, K.-H.; Lin, J.-F.: Rapid palm-biodiesel production assisted by a microwave system and sodium methoxide catalyst. Fuel 115, 306–311 (2014)

    Article  Google Scholar 

  19. Srivastava, P.; Verma, M.: Methyl ester of karanja oil as an alternative renewable source energy. Fuel 87(8), 1673–1677 (2008)

    Article  Google Scholar 

  20. Sharma, Y.C.; Singh, B.; Korstad, J.: High yield and conversion of biodiesel from a nonedible feedstock (Pongamia pinnata). J. Agric. Food Chem. 58(1), 242–247 (2009)

    Article  Google Scholar 

  21. Griffiths, M.; Van Hille, R.P.; Harrison, S.T.L.: Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45(11), 1053–1060 (2010)

    Article  Google Scholar 

  22. Sahoo, P.; Das, L.M.: Combustion analysis of Jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine. Fuel 88(6), 994–999 (2009)

    Article  Google Scholar 

  23. Dhar, A.; Agarwal, A.K.: Performance, emissions and combustion characteristics of Karanja biodiesel in a transportation engine. Fuel 119, 70–80 (2014)

    Article  Google Scholar 

  24. Chauhan, B.S.; Kumar, N.; Cho, H.M.; Lim, H.C.: A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends. Energy 56, 1–7 (2013)

    Article  Google Scholar 

  25. Thiruvengadaravi, K.; Nandagopal, J.; Baskaralingam, P.; Bala, V.S.S.; Sivanesan, S.: Acid-catalyzed esterification of karanja (Pongamia pinnata \(>\)) oil with high free fatty acids for biodiesel production. Fuel 98, 1–4 (2012)

    Article  Google Scholar 

  26. Naik, M.; Meher, L.C.; Naik, S.N.; Das, L.M.: Production of biodiesel from high free fatty acid Karanja Pongamia pinnata oil. Biomass Bioenergy 32(4), 354–357 (2008)

    Article  Google Scholar 

  27. Atabani, A.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S.: A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sustain. Energy Rev. 16(4), 2070–2093 (2012)

    Article  Google Scholar 

  28. Demirbas, A.: Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 50(1), 14–34 (2009)

    Article  Google Scholar 

  29. Tat, M.E.; Van Gerpen, J.H.: The specific gravity of biodiesel and its blends with diesel fuel. J. Am. Oil. Chem. Soc. 77(2), 115–119 (2000)

    Article  Google Scholar 

  30. Bahadur, N.P.; Boocock, D.G.B.; Konar, S.K.: Liquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: evaluation of fuel properties. Energy Fuels 9(2), 248–256 (1995)

    Article  Google Scholar 

  31. Wang, Y.; Liu, P.; Ou, S.; Zhang, Z.: Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers. Manag. 48(1), 184–188 (2007)

    Article  Google Scholar 

  32. Marchetti, J.M.: A summary of the available technologies for biodiesel production based on a comparison of different feedstock’s properties. Process Saf. Environ. Prot. 90(3), 157–163 (2012)

    Article  Google Scholar 

  33. Banković-Ilić, I.B.; Stamenković, O.S.; Veljković, V.B.: Biodiesel production from non-edible plant oils. Renew. Sustain. Energy Rev. 16(6), 3621–3647 (2012)

    Article  Google Scholar 

  34. Jain, S.; Sharma, M.P.: Biodiesel production from Jatropha curcas oil. Renew. Sustain. Energy Rev. 14(9), 3140–3147 (2010)

    Article  Google Scholar 

  35. Demirbas, A.: Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manag. 49(1), 125–130 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. M. Yunus Khan or Irfan Anjum Badruddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunus Khan, T.M., Badruddin, I.A., Ankalgi, R.F. et al. Biodiesel Production by Direct Transesterification Process via Sequential Use of Acid–Base Catalysis. Arab J Sci Eng 43, 5929–5936 (2018). https://doi.org/10.1007/s13369-018-3078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3078-5

Keywords

Navigation