Skip to main content
Log in

Effect of Graphene Nanoplatelets and Paraffin Oil Addition on the Mechanical and Tribological Properties of Low-Density Polyethylene Nanocomposites

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Polymeric nanocomposite materials have solved many problems due to their extensive applications such as aerospace, automobiles, coatings, and packaging materials. Low-density polyethylene (LDPE)/graphene nanoplatelets (GNPs) impregnated by paraffin oil (PO) were fabricated by a hot compression technique. Elastic modulus was calculated by results of compression test that conducted on the testing nanocomposites using a universal testing machine. Microhardness of LDPE and its composites was measured by Vickers microhardness testing machine. Tribological properties of LDPE and its composites were investigated by pin-on-disc tester at 20 N normal load, \(1.2~\hbox {ms}^{-1}\) sliding velocity, and 212 m sliding distance. The results showed that the elastic modulus and microhardness of LDPE/GNP nanocomposites are higher than that of pure LDPE and then gradually decreased by adding PO contents. Tribological properties proved that LDPE/GNP nanocomposites have lower coefficient of friction (COF) and wear rates in comparison with pure LDPE. By adding PO contents to the LDPE and its composites, COF and wear rates were gradually increased. Wear specimens’ surfaces were imaged using scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, K.; Kulkarni, D.D.; Choi, I.; Tsukruk, V.V.: Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014)

    Article  Google Scholar 

  2. Luyt, A.S.; Geethamma, V.G.: Effect of oxidized paraffin wax on the thermal and mechanical properties of linear low-density polyethylene-layered silicate nanocomposites. Polym. Test 26(4), 461–470 (2007)

    Article  Google Scholar 

  3. Masjedi-Arani, M.; Ghanbari, D.; Salavati-Niasari, M.; Bagheri, S.: Sonochemical synthesis of spherical silica nanoparticles and polymeric nanocomposites. Clust. Sci. 27(1), 25–38 (2016)

    Article  Google Scholar 

  4. Cui, Y.; Kundalwal, S.I.; Kumar, S.: Gas barrier performance of graphene/polymer nanocomposites. Carbon 98, 313–333 (2016)

    Article  Google Scholar 

  5. Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H.: Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym. Test 31(1), 31–38 (2012)

    Article  Google Scholar 

  6. Verma, D.; Gope, P.C.; Shandilya, A.; Gupta, A.: Mechanical-thermal-electrical and morphological properties of graphene reinforced polymer composites: a review. Trans. Indian Inst. Met. 67, 803–816 (2014)

    Article  Google Scholar 

  7. Chang, B.P.; Akil, H.M.; Affendy, M.G.; Khan, A.; Nasir, R.B.M.: Comparative study of wear performance of particulate and fiber-reinforced nano-ZnO/ultra-high molecular weight polyethylene hybrid composites using response surface methodology. Mater. Des. 63, 805–819 (2014)

    Article  Google Scholar 

  8. Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, L.H.: Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    Article  Google Scholar 

  9. Goodridge, R.D.; Shofner, M.L.; Hague, R.J.M.; McClelland, M.; Schlea, M.R.; Johnson, R.B.; Tuck, C.J.: Processing of a polyamide-12/carbon nanofibre composite by laser sintering. Polym. Test 30(1), 94–100 (2011)

    Article  Google Scholar 

  10. Kuila, T.; Bose, S.; Hong, C.E.; Uddin, M.E.; Khanra, P.; Kim, N.H.; Lee, J.H.: Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 49(3), 1033–1037 (2011)

    Article  Google Scholar 

  11. Lahiri, D.; Hec, F.; Thiesse, M.; Durygin, A.; Zhang, C.; Agarwal, A.: Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribol. Int. 70, 165–169 (2014)

    Article  Google Scholar 

  12. Kim, H.; Kobayashi, S.; AbdurRahim, M.A.; Zhang, M.J.; Khusainova, A.; Hillmyer, M.A.; Abdala, A.A.; Macosko, C.W.: Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer 52(8), 1837–1846 (2011)

    Article  Google Scholar 

  13. Das, T.K.; Prusty, S.: Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 52(4), 319–331 (2013)

    Article  Google Scholar 

  14. Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C.: Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties. Appl. Surf. Sci. 392, 244–255 (2017)

    Article  Google Scholar 

  15. Zhang, H.B.; Zheng, W.G.; Yan, Q.; Yang, Y.; Wang, J.W.; Lu, Z.H.; Ji, G.Y.; Yu, Z.Z.: Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5), 1191–1196 (2010)

    Article  Google Scholar 

  16. Kalaitzidou, K.; Fukushima, H.; Drzal, L.T.: A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67(10), 2045–2051 (2007)

    Article  Google Scholar 

  17. Lee, J.H.; Kim, S.K.; Kim, N.H.: Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scr. Mater. 55(12), 1119–1122 (2006)

    Article  Google Scholar 

  18. Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A.K.: A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)

    Article  Google Scholar 

  19. Kim, H.; Macosko, C.W.: Processing-property relationships of polycarbonate/graphene composites. Polymer 50(15), 3797–3809 (2009)

    Article  Google Scholar 

  20. Steurer, P.; Wissert, R.; Thomann, R.; Mulhaupt, R.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30(4–5), 316–327 (2009)

    Article  Google Scholar 

  21. Fu, S.; Li, N.; Wang, K.; Zhang, Q.; Fu, Q.: Reduction of graphene oxide with the presence of polypropylene micro-latex for facile preparation of polypropylene/graphene nanosheet composites. Colloid Polym. Sci. 293, 1495–1503 (2015)

    Article  Google Scholar 

  22. Stankovich, S.; Dikin, A.D.; Dommett, G.H.B.: Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  23. Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y.: Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 19(14), 2297–2302 (2009)

    Article  Google Scholar 

  24. Zhou, T.; Zhou, F.; Tang, C.; Bai, H.; Zhang, Q.; Deng, H.; Fu, Q.: The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Compos. Sci. Technol. 71(9), 1266–1270 (2011)

    Article  Google Scholar 

  25. Zhan, Y.; Wu, J.; Xia, H.; Yan, N.; Fei, G.; Yuan, G.: Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol. Mater. Eng. 276(7), 590–602 (2011)

    Article  Google Scholar 

  26. Bai, X.; Wan, C.; Zhang, Y.; Zhai, Y.: Reinforcement of hydrogenated carboxylated nitrile-butadiene rubber with exfoliated graphene oxide. Carbon 49(5), 1608–1613 (2011)

    Article  Google Scholar 

  27. Du, J.; Cheng, H.: The fabrication, properties, and uses of graphene/polymer composites. Macromol. Chem. Phys. 213(10–11), 1060–1077 (2012)

    Article  Google Scholar 

  28. Verdejo, R.; Bernal, M.M.; Romasanta, L.J.; Lopez, M.A.: Graphene filled polymer nanocomposites. Mater. Chem. 21(10), 3301–3310 (2010)

    Article  Google Scholar 

  29. Kim, H.; Abdala, A.A.; Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    Article  Google Scholar 

  30. Yoo, B.M.; Shin, H.J.; Yoon, H.W.; Park, H.B.: Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 131(1), 1–23 (2014)

    Article  Google Scholar 

  31. Chang, B.P.; Akil, H.M.; Nasir, R.B.; Khan, A.: Optimization on wear performance of UHMWPE composites using response surface methodology. Tribol. Int. 88, 252–262 (2015)

  32. Chang, L.; Zhang, Z.; Breidt, C.; Friedrich, K.: Tribological properties of epoxy nanocomposites I. Enhancement of the wear resistance by nano-TiO\(_{2}\) particles. Wear 258(1–4), 141–148 (2005)

    Article  Google Scholar 

  33. Li, C.; Friedrich, L.: Enhancement effect of nanoparticles on the sliding wear of short fiber-reinforced polymer composites: a critical discussion of wear mechanisms. Tribol. Int. 43(12), 2355–2364 (2010)

    Article  Google Scholar 

  34. Campo, M.; Jiménez-Suárez, A.; Ureña, A.: Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear 324, 100–108 (2015)

    Article  Google Scholar 

  35. Chunying, M.; Peng, N.; Jie, S.H.; Zhaozhu, Z.; Kaili, Z.: Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol. Int. 80, 131–140 (2014)

    Article  Google Scholar 

  36. Tai, Z.; Chen, Y.; An, Y.; Yan, X.; Xue, Q.: Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol. Lett. 46, 55–63 (2012)

    Article  Google Scholar 

  37. Krupa, I.; Nógellová, Z.; Špitalský, Z.; Malíková, M.; Sobolciak, P.; Abdelrazeq, H.; Ouederni, M.; Karkri, M.; Janigová, I.; Al-Maadeed, M.: Positive influence of expanded graphite on the physical behavior of phase change materials based on linear low-density polyethylene and paraffin wax. Thermochim. Acta 614, 218–225 (2015)

    Article  Google Scholar 

  38. Zhang, Z.; Xue, Q.; Liu, W.; Shen, W.: Friction and wear properties of metal powder filled PTFE composites under oil lubricated conditions. Wear 210, 151–156 (1997)

    Article  Google Scholar 

  39. Jia, B.; Li, T.; Liu, X.; Cong, P.: Tribological behaviors of several polymer–polymer sliding combinations under dry friction and oil-lubricated conditions. Wear 262, 1353–1359 (2007)

    Article  Google Scholar 

  40. Lei, H.; Liu, Z.; He, C.; Zhang, S.; Liu, Y.; Hua, C.; Li, X.; Li, F.; Chen, C.; Cai, R.: Graphene enhanced low-density polyethylene by pretreatment and melt compounding. RSC Adv. 6, 101492–101500 (2016)

    Article  Google Scholar 

  41. Fim, F.; Basso, N.; Graebin, A.; Azambuja, D.; Galland, G.: Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J. Appl. Polym. Sci. 128, 2630–2637 (2013)

    Article  Google Scholar 

  42. Gaska, K.; Gubanski, X.; Kádár, G.: Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process. Polymers 9, 30–40 (2017)

    Article  Google Scholar 

  43. Şahin, Y.: Analysis of abrasive wear behavior of PTFE composite using Taguchi’s technique. Cogent Eng. 1, 1–15 (2015)

    Google Scholar 

  44. Pan, B.; Zhang, S.; Li, W.; Zhao, J.; Liu, J.; Zhang, Y.; Zhang, Y.: Tribological and mechanical investigation of MC nylon reinforced by modified graphene oxide. Wear 294, 395–401 (2012)

    Article  Google Scholar 

  45. Guo, F.; Zhang, Z.; Liu, W.; Su, F.; Zhang, H.: Influence of solid lubricant reinforcement on wear behavior of Kevlar fabric composites. Appl. Polym. Sci. 110, 1771–1777 (2008)

    Article  Google Scholar 

  46. Li, Y.; Wang, Q.; Wang, T.; Pan, G.: Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J. Mater. Sci. 47, 730–738 (2012)

    Article  Google Scholar 

  47. Liu, H.; Li, Y.; Wang, T.; Wang, Q.: In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. J. Mater. Sci. 47, 1867–1874 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El-Sayed M. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.ES.M., EiD, A.I., El-Sheikh, M. et al. Effect of Graphene Nanoplatelets and Paraffin Oil Addition on the Mechanical and Tribological Properties of Low-Density Polyethylene Nanocomposites. Arab J Sci Eng 43, 1435–1443 (2018). https://doi.org/10.1007/s13369-017-2965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2965-5

Keywords

Navigation