Skip to main content
Log in

Tribological properties of compatabilizer and graphene oxide-filled polypropylene nanocomposites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Effect of maleic-anhydride-grafted-polypropylene (PP-g-MA) and graphene oxide (GO) addition on the tribological properties of polypropylene (PP) nanocomposites were investigated in this study. Graphene oxides with different levels (0.05 and 0.15 wt%) were used as reinforcing filler for PP nanocomposites. Maleic-anhydride-grafted-polypropylene (3 wt%) was added as a compatibilizer agent to increase the interaction between the GO and PP matrix. GO-filled PP nanocomposites with and without PP-g-MA were produced by a twin-screw extruder followed by injection moulding. Wear tests were carried out under dry sliding conditions against AISI 1040 steel disc using a pin-on-disc device at 0.4–1.6\(\hbox { m s}^{-1}\) sliding speed and 10–40 N loads. The tribological test results showed that the coefficient of friction and wear rate of PP nanocomposites increased with applied loads and sliding speeds. The coefficient of friction decreased by 8.2, 14.2, 37.3 and 74.7% under \(1.2\hbox { m s}^{-1}\) sliding speed and 40 N load with the addition of PP-g-MA and GO to the PP nanocomposites. The wear rate of PP and its nanocomposites was \(10^{-13}\hbox { m}^{2}\hbox { N}^{-1}\). The minimum wear rate was obtained for 0.15 wt% GO and 3 wt% PP-g-MA-filled PP nanocomposites with a value of \(5.7537\hbox {E}^{-14}\hbox { m}^{2}\hbox { N}^{-1}\) at \(0.4\hbox {m s}^{-1}\) sliding speed and 10 N load in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Golchin A A W and Nazanin E 2016 Tribol. Int. 95 156

    CAS  Google Scholar 

  2. Song H, Na L, Yanjie L, Chunying M and Zhen W 2012 J. Mater. Sci. 47 6436

    CAS  Google Scholar 

  3. Zhang M Q, Rong M Z, Yu S L, Wetzel B and Friedrich K 2002 Wear 253 1086

    CAS  Google Scholar 

  4. Patchanee C, Katsuhiko M, Toshiaki T and Minoru T 2016 Materials 9 240

    Google Scholar 

  5. Satheeskumar S and Kanagaraj G 2016 Bull. Mater. Sci. 39 1467

    CAS  Google Scholar 

  6. O’Neill A, Bakirtzis D and Dixon D 2014 Eur. Polym. J. 59 353

    Google Scholar 

  7. Puértolas J A and Kurtz S M 2014 J. Mech. Behav. Biomed. Mater. 39 129

    Google Scholar 

  8. Madhab B and Pradip K M 2017 MOJ Polym. Sci. 1 94

    Google Scholar 

  9. Tapan K D and Smita P 2013 Polym.-Plast. Technol. 52 319

    Google Scholar 

  10. Andrew T S, Anna M L C, Songshan Z, Bin L and Luyi S 2019 Nano Mater. Sci. 1 31

    Google Scholar 

  11. Taib A, Guillaume C and Tobin F 2018 ACS Appl. Mater. Interfaces 10 22537

    Google Scholar 

  12. Jianchang L, Xiangqiong Z, Tianhui R and Emile van der H 2014 Lubricants 2 137

    Google Scholar 

  13. Oleksiy P, Hae-Jin K, Hyun-Joon K and Dae-Eun K 2014 Int. J. Pr. Eng. Man-Gt 15 577

    Google Scholar 

  14. Liang H, Bu Y, Zhang J, Cao Z and Liang A 2013 ACS Appl. Mater. Interfaces 5 6369

    CAS  Google Scholar 

  15. Thangavel E, Ramasundaram S, Pitchaimuthu S, Hong S W, Lee S Y, Yoo S S et al 2014 Compos. Sci. Technol. 90 187

    CAS  Google Scholar 

  16. Shen X, Pei X, Fu S and Friedrich K    2013 Polymer 54 1234

    CAS  Google Scholar 

  17. Shen X, Pei X, Liu Y and Fu S 2014 Compos. Part B 57 120

    CAS  Google Scholar 

  18. Tai Z, Chen Y, An Y, Yan X and Xue Q 2012 Tribol. Lett. 46 55

    CAS  Google Scholar 

  19. An Y, Zhixin T, Yuanyuan Q, Xingbin Y, Bin L, Qunji X et al 2014 J. Appl. Polym. Sci. 131 39640

    Google Scholar 

  20. Jinhong D and Hui-Ming C 2012 Macromol. Chem. Phys. 213 1060

    Google Scholar 

  21. Liu H, Li Y H, Wang T M and Wang Q H 2012 J. Mater. Sci. 47 1867

    CAS  Google Scholar 

  22. Yuanshi X, Tonsheng L, Dafei G, Fanglin X and Mingming W 2017 RSC Adv. 7 6323

    Google Scholar 

  23. Feng Q, Yongbo H, Xiaoyun L, Bo W and Ming W 2015 Compos. Part B Eng. 71 175

    Google Scholar 

  24. Dimitrios B 2010 Materials 3 2884

    Google Scholar 

  25. Juan L 2017 J. Nanomater.2017 1

  26. Prashantha K, Soulestin J, Lacrampe M F and Krawczak P 2014 Int. J. Polym. Anal. Charact. 19 363

    CAS  Google Scholar 

  27. Yanhui L and Jinglong G 2011 Adv. Mater. Res. 299–300 798

  28. Bettina D, Wartig K A, Daniel H, Schartel B and M Rolf 2013 Polym. Degrad. Stab. 98 1495

    Google Scholar 

  29. Suresha B, Ravi Kumar B N, Venkataramareddy M et al 2010 Mater. Design. 31 1993

    CAS  Google Scholar 

  30. Robert A S and Frances T C 2012 Compos. Part A 43 1092

    Google Scholar 

  31. Frances T Cerezo, Christopher M L Preston and Robert A Shanks 2007 Macromol. Mater. Eng. 292 155

    CAS  Google Scholar 

  32. Chen J, Huang Z, Lv W and Wang C 2018 Polym. Compos. 113

  33. Wang C, Zhao Y, Ge H Y and Qian R S 2016 Polym. Compos. 39 405

    Google Scholar 

  34. Ryu S H and Shanmugharaj A M 2014 Mater. Chem. Phys. 146 478

    CAS  Google Scholar 

  35. Sung H R and Shanmugharaj A M 2014 Chem. Eng. J. 244 552

    Google Scholar 

  36. Christopher II and Azman H 2016 Synth. Met. 212 91

    Google Scholar 

  37. Ji-Zhao L, Qiang D, Gary Chi-Pong T and Chak-Yin T 2016 Compos. Part B 95 166

    Google Scholar 

  38. Saman M, Faramarz A G and Ismail G 2016 Polym. Test. 54 281

    Google Scholar 

  39. Bahareh K, Mohammad R M M, Farhad S and Ruhollah S R 2015 Compos. Part A 76 203

    Google Scholar 

  40. Xiaochen H, Ying H H and Dong X J 2018 High Perform. Polym. 30 406

    Google Scholar 

  41. Sashi S K, Mohammad A R, Fazel Y, Michaiel S, Zhong-Zhen Y, Thierry A B et al 2012 Carbon 50 3178

    Google Scholar 

  42. Yan S, Dangsheng X and Jianliang L 2017 Key Eng. Mater. 739 152

    Google Scholar 

  43. Padenko E, van Rooyen L J, Wetzel B and Karger-Kocsis J 2016 J. Reinf. Plast. Compos. 35 892

  44. Lee C, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W et al 2010 Science 328 76

    CAS  Google Scholar 

  45. Mindivan F 2017 Tribol. Ind. 39 277

    Google Scholar 

  46. Wang H, Xie G, Zhu Z, Zhe Y and You Z 2014 Compos. Part A  67 268

    CAS  Google Scholar 

  47. Samyn P and Schoukens G 2009 Mater. Chem. Phys. 115 185

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Yetgin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yetgin, S.H. Tribological properties of compatabilizer and graphene oxide-filled polypropylene nanocomposites. Bull Mater Sci 43, 89 (2020). https://doi.org/10.1007/s12034-020-2061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2061-4

Keywords

Navigation