Skip to main content
Log in

Numerical Simulation and Experimental Comparison of Single, Double and Triple Serpentine Flow Channel Configuration on Performance of a PEM Fuel Cell

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the effect of single (1-S), double (2-S) and triple (3-S) serpentine flow field configuration on the performance of PEM fuel cell (PEMFC) was investigated both numerically and experimentally. First, a complete 3-D PEMFC model was developed, and simulations were carried out to examine the effect of 1-S, 2-S and 3-S flow field configuration on the performance of PEMFC using commercial CFD code ANSYS FLUENT. Along with the cell performance, important parameters such as pressure distribution, mass fraction of hydrogen, oxygen, liquid water activity, current flux density distribution and the membrane water content have been presented. Next, an experimental study is carried out with a PEMFC by changing 1-S, 2-S and 3-S flow field configurations to verify the numerical predictions. Finally numerically and experimentally obtained performance curves have been compared, and 1-S flow channel fuel cell is found to exhibit the best electrochemical performance compared with the 2-S and 3-S flow channel fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Veziroglu, T.N.; Şahin, S.: 21st century’s energy: hydrogen energy system. Energy Convers. Manag. 49(7), 1820–1831 (2008)

    Article  Google Scholar 

  2. Hossain, M.; Islam, S.Z.; Pollard, P.: Investigation of species transport in a gas diffusion layer of a polymer electrolyte membrane fuel cell through two-phase modelling. Renew. Energy 51, 404–418 (2013)

    Article  Google Scholar 

  3. Caglayan, D.G.; Sezgin, B.; Devrim, Y.Y.Y.; Eroglu, I.: Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures. Int. J. Hydrogen Energy 41(23), 1–11 (2016)

    Article  Google Scholar 

  4. Berning, T.; Lu, D.M.; Djilali, N.: Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sources 106(1), 284–294 (2002)

    Article  Google Scholar 

  5. Nguyen, P.T.; Berning, T.; Djilali, N.: Computational model of a PEM fuel cell with serpentine gas flow channels. J. Power Sources 130(1–2), 149–157 (2004)

    Article  Google Scholar 

  6. Li, X.; Sabir, I.; Park, J.: A flow channel design procedure for PEM fuel cells with effective water removal. J. Power Sources 163, 933–942 (2007)

    Article  Google Scholar 

  7. Jeon, D.H.; Greenway, S.; Shimpalee, S.; Van Zee, J.W.: The effect of serpentine flow-field designs on PEM fuel cell performance. Int. J. Hydrogen Energy 33(3), 1052–1066 (2008)

    Article  Google Scholar 

  8. Wang, X.D.; Duan, Y.Y.; Yan, W.M.; Peng, X.F.: Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs. J. Power Sources 175(1), 397–407 (2008)

    Article  Google Scholar 

  9. Jang, J.-H.; Yan, W.-M.; Li, H.-Y.; Tsai, W.-C.: Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields. Int. J. Hydrogen Energy 33(1), 156–164 (2008)

    Article  Google Scholar 

  10. Carcadea, E.; Ene, H.; Ingham, D.B.; Lazar, R.; Ma, L.; Pourkashanian, M.; Stefanescu, I.: A computational fluid dynamics analysis of a PEM fuel cell system for power generation. Int. J. Numer. Methods Heat Fluid Flow 17(3), 302–312 (2007)

    Article  Google Scholar 

  11. Yan, W.-M.; Li, H.-Y.; Tsai, W.-C.: Three-dimensional analysis of PEMFCs with different flow channel designs. J. Electrochem. Soc. 153(10), A1984 (2006)

    Article  Google Scholar 

  12. Basu, S.; Li, J.; Wang, C.Y.: Two-phase flow and maldistribution in gas channels of a polymer electrolyte fuel cell. J. Power Sources 187(2), 431–443 (2009)

    Article  Google Scholar 

  13. Akbari, M.H.; Rismanchi, B.: Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance. Renew. Energy 33(8), 1775–1783 (2008)

    Article  Google Scholar 

  14. Chang, D.H.; Wu, S.Y.: The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields. Int. J. Hydrogen Energy 40(35), 11659–11667 (2015)

    Article  Google Scholar 

  15. Lakshminarayanan, V.; Karthikeyan, P.; Muthukumar, M.; Senthil Kumar, A.P.; Kavin, B.; Kavyaraj, A.: Numerical investigation of performance studies on single pass PEM fuel cell with various flow channel design. Appl. Mech. Mater. 592–594, 1672–1676 (2014)

    Article  Google Scholar 

  16. Muthukumar, M.; Karthikeyan, P.; Lakshminarayanan, V.; Senthil Kumar, A.P.; Vairavel, M.; Girimurugan, R.: Performance studies on PEM fuel cell with 2, 3 and 4 pass serpentine flow field designs. Appl. Mech. Mater. 592–594, 1728–1732 (2014)

  17. Khazaee, I.; Ghazikhani, M.: Three-dimensional modeling and development of the new geometry PEM fuel cell. Arab. J. Sci. Eng. 38(6), 1551–1564 (2013)

    Article  Google Scholar 

  18. Khazaee, I.; Ghazikhani, M.: Experimental characterization and correlation of a triangular channel geometry PEM fuel cell at different operating conditions. Arab. J. Sci. Eng. 38(9), 2521–2531 (2013)

    Article  Google Scholar 

  19. Chi, P.-H.; Weng, F.-B.; Su, A.; Chan, S.-H.: Numerical modeling of proton exchange membrane fuel cell with considering thermal and relative humidity effects on the cell performance. J. Fuel Cell Sci. Technol. 3(3), 292 (2006)

    Article  Google Scholar 

  20. Zenyuk, I.V.; Taspinar, R.; Kalidindi, A.R.; Kumbur, E.C.; Litster, S.: Computational and experimental analysis of water transport at component interfaces in polymer electrolyte fuel cells. J. Electrochem. Soc. 161(11), F3091–F3103 (2014)

    Article  Google Scholar 

  21. Wang, L.P.; Zhang, L.H.; Jiang, J.P.: Optimization of channel dimensions in the flow-field for PEMFC. Appl. Mech. Mater. 44–47, 2404–2408 (2010)

    Article  Google Scholar 

  22. Ozen, D.N.; Timurkutluk, B.; Altinisik, K.: Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renew. Sustain. Energy Rev. 59, 1298–1306 (2016)

    Article  Google Scholar 

  23. Kahveci, E.E.; Taymaz, I.: An experimental study of response surface methodology to optimise the operating parameters on PEM fuel cell. Int. J. Veh. Des. 71(1), 321–334 (2016)

    Article  Google Scholar 

  24. Wang, X.-D.D.; Duan, Y.-Y.Y.; Yan, W.-M.M.; Weng, F.-B.B.: Effects of flow channel geometry on cell performance for PEM fuel cells with parallel and interdigitated flow fields. Electrochim. Acta J. 53(1), 5334–5343 (2008)

    Article  Google Scholar 

  25. Zhang, Z.; Li, : Parametric study of the porous cathode in the PEM fuel cell. Int. J. Energy Res. 33, 52–61 (2009)

    Article  Google Scholar 

  26. Salva, J.A.; Iranzo, A.; Rosa, F.; Tapia, E.: Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions. Energy 101, 100–112 (2016)

    Article  Google Scholar 

  27. Iranzo, A.; Boillat, P.; Biesdorf, J.; Tapia, E.; Salva, A.; Guerra, J.: Liquid water preferential accumulation in channels of PEM fuel cells with multiple serpentine flow fields. Int. J. Hydrogen Energy 39(28), 15687–15695 (2014)

    Article  Google Scholar 

  28. Li, Y.-S.; Han, Y.; Zhan, J.-M.: Uniformity analysis in different flow-field configurations of proton exchange membrane fuel cell. J. Fuel Cell Sci. Technol. 10(3), 31003 (2013)

    Article  Google Scholar 

  29. Iranzo, A.; Muñoz, M.; Rosa, F.; Pino, J.: Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation. Int. J. Hydrogen Energy 35(20), 11533–11550 (2010)

    Article  Google Scholar 

  30. Han, Y.; Zhan, J.M.: The impact of channel assembled angle on proton exchange membrane fuel cell performance. J. Power Sources 195(19), 6586–6597 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswarlu Velisala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velisala, V., Srinivasulu, G.N. Numerical Simulation and Experimental Comparison of Single, Double and Triple Serpentine Flow Channel Configuration on Performance of a PEM Fuel Cell. Arab J Sci Eng 43, 1225–1234 (2018). https://doi.org/10.1007/s13369-017-2813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2813-7

Keywords

Navigation