Skip to main content
Log in

Evaluation of Pore Size and Distribution Impacts on Uniaxial Compressive Strength of Lithophysal Rock

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Discrete element method (DEM) has been extensively used for studying the properties of rock mass through numerical simulation, which includes bonded particle (or grain) model method (BPM) and discrete fracture network method. In this paper, utilization of BPM for modeling uniaxial compressive strength (UCS) of lithophysal rock is explored and associated stages are discussed and calibrated including generation of particles, sample scale, loading method, macro- and micro-parameters of BPM. In order to investigate the impacts of pore size and distribution of lithophysal tuff on UCS, various combinations of different pore sizes in one sample and different pore locations with the same pore size are simulated using BPM-DEM. The simulation results show that UCS significantly decreases due to the existence of pores with the same condition of porosity, and when the pore radii increase, the minimum value of UCS slightly declines. Moreover, combinations of different pore sizes in one sample show that greater proportion of small pore radii increases UCS of the sample, while the differences of UCS values decrease. Meanwhile, associated fracture has been observed to develop along the pore and generally tends to develop along the large pores at the edge of the sample in the process of uniaxial compression simulation, with relatively small associated UCS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yan, M.: Numerical Modelling of Brittle Fracture and Step-Path Failure: From Laboratory to Rock Slope Scale (Doctoral dissertation, Dept. of Earth Sciences-Simon Fraser University) (2008)

  2. Li, J.: Field experimental study and numerical simulation of seepage in saturated/unsaturated cracked soil. Doctoral dissertation, Hong Kong University Science & Technology (2008)

  3. Paluszny, A.; Matthai, S.K.: Impact of fracture development on the effective permeability of porous rocks as determined by 2-D discrete fracture growth modeling. J. Geophys. Res. 115(B2), 1448–1470 (2010)

  4. Gao, F.: Simulation of Failure Mechanisms Around Underground Coal Mine Openings Using Discrete Element Modelling (Doctoral dissertation, Science: Department of Earth Sciences (2013)

  5. Gao, F.; Stead, D.; Coggan, J.: Evaluation of coal longwall caving characteristics using an innovative UDEC Trigon approach. Comput. Geotech. 55, 448–460 (2014)

    Article  Google Scholar 

  6. Damjanac, B.; Board, M.; Lin, M.; Kicker, D.; Leem, J.: Mechanical degradation of emplacement drifts at Yucca Mountain—a modeling case study: Part II: lithophysal rock. Int. J. Rock Mech. Min. Sci. 44(3), 368–399 (2007)

    Article  Google Scholar 

  7. James, A.N.: Tensile strength and failure criterion of analog lithophysal rock. George Washington University, Washington (2009)

    Google Scholar 

  8. Bai, Q.S.; Tu, S.H.; Zhang, C.: DEM investigation of the fracture mechanism of rock disc containing hole(s) and its influence on tensile strength. Theor. Appl. Fract. Mech. 86, 197–216 (2016)

    Article  Google Scholar 

  9. Lin, P.; Wong, R.H.; Tang, C.A.: Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes. Int. J. Rock Mech. Min. Sci. 77, 313–327 (2015)

    Google Scholar 

  10. Rigby, D.B.; Karakouzian, M.; Smiecinski, A.J.: Influence of lithophysal geometry on the uniaxial compression of tuff-like rock (2007)

  11. Palchik, V.; Hatzor, Y.H.: Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones. Eng. Geol. 63(3), 233–245 (2002)

    Article  Google Scholar 

  12. Al-Harthi, A.A.; Al-Amri, R.M.; Shehata, W.M.: The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng. Geol. 54(3), 313–320 (1999)

    Article  Google Scholar 

  13. Avar, B.B.; Hudyma, N.; Karakouzian, M.: Porosity dependence of the elastic modulus of lithophysae-rich tuff: numerical and experimental investigations. Int. J. Rock Mech. Min. Sci. 40(6), 919–928 (2003)

    Article  Google Scholar 

  14. Palchik, V.: Application of Mohr–Coulomb failure theory to very porous sandy shales. Int. J. Rock Mech. Min. Sci. 43(7), 1153–1162 (2006)

    Article  Google Scholar 

  15. Christianson, M.C.; Board, M.P.; Rigby, D.B.: ARMA/USRMS 06-968 (2006)

  16. Erfourth, B.; Wright, C.; Hudyma, N.; MacLaughlin, M.: 3-D numerical models of macroporous rock: investigation the influence of void characteristics on elastic modulus. In: Proceedings of Golden Rocks-41st US Rock Mechanics Association Symposium, pp. 17–21 (2006)

  17. Fakhimi, A.; Gharahbagh, E.A.: Discrete element analysis of the effect of pore size and pore distribution on the mechanical behavior of rock. Int. J. Rock Mech. Min. Sci. 48(1), 77–85 (2011)

    Article  Google Scholar 

  18. Xue, X.: Study on relations between porosity and damage in fractured rock mass. Geomech. Eng. 9(1), 15–24 (2015)

    Article  Google Scholar 

  19. Kazerani, T.; Zhao, J.: Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int. J. Numer. Anal. Methods Geomech. 34(18), 1877–1895 (2010)

    Article  MATH  Google Scholar 

  20. Cundall, P.A.: A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the Symposium on Rock Fracture (ISRM), vol. 1, Nancy (2013)

  21. Bidgoli, M.N.; Zhao, Z.; Jing, L.: Numerical evaluation of strength and deformability of fractured rocks. J. Rock Mech. Geotech. Eng. 5(6), 419–430 (2013)

    Article  Google Scholar 

  22. Cundall, P.: A computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of the International Symposium on Rock Fracture, pp. 11–18 (1971)

  23. Lan, H.; Martin, C.D.; Hu, B.: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. 115(B1), 414–431 (2010)

  24. Xu, W.J.; Li, C.Q.; Zhang, H.Y.: DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test. Geomech. Eng. 9(6), 815–827 (2015)

    Article  Google Scholar 

  25. Zhao, Y.; Zhao, G.F.; Jiang, Y.; Elsworth, D.; Huang, Y.: Effects of bedding on the dynamic indirect tensile strength of coal: laboratory experiments and numerical simulation. Int. J. Coal Geol. 132, 81–93 (2014)

  26. Lisjak, A.; Grasselli, G.: A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J. Rock Mech. Geotech. Eng. 6(4), 301–314 (2014)

  27. Nygards, M.; Gudmundson, P.: Micromechanical modeling of ferritic/pearlitic steels. Mater. Sci. Eng. A 325, 435–443 (2002)

    Article  Google Scholar 

  28. Zhang, K.S.; Wu, M.S.; Feng, R.: Simulation of microplasticity-induced deformation in uniaxially strained ceramics by 3-D Voronoi polycrystal modeling. Int. J. Plast. 21(4), 801–834 (2005)

    Article  MATH  Google Scholar 

  29. Li, H.; Li, K.; Subhash, G.; Kecskes, L.J.; Dowding, R.J.: Micromechanical modeling of tungsten-based bulk metallic glass matrix composites. Mater. Sci. Eng. A 429, 115–123 (2006)

    Article  Google Scholar 

  30. Nicksiar, M.: Effective Parameters on Crack Initiation Stress in Low Porosity Rocks (Doctoral dissertation, University of Alberta) (2013)

  31. Jing, L.; Stephansson, O.; Nordlund, E.: Study of rock joints under cyclic loading conditions. Rock Mech. Rock Eng. 26(3), 215–232 (1993)

    Article  Google Scholar 

  32. Moore, D.E.; Lockner, D.A.: The role of microcracking in shear-fracture propagation in granite. J. Struct. Geol. 17(1), 95–114 (1995)

    Article  Google Scholar 

  33. Min, K.B.; Jing, L.R.: Numerical determination of the equivalent elastic compliance tensor for fractured rockmasses using the distinct element method. Int. J. Rock Mech. Min. Sci. 40(6), 795–816 (2003)

    Article  MathSciNet  Google Scholar 

  34. Cho, N.A.; Martin, C.D.; Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. Sci. 44(7), 997–1010 (2007)

    Article  Google Scholar 

  35. Diederichs, M.S.: Instability of Hard Rockmasses: The Role of Tensile Damage and Relaxation. University of Waterloo, Waterloo (2001)

    Google Scholar 

  36. Potyondy, D.O.; Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  37. Itasca Consulting Group Inc.: UDEC: Universal Distinct Element Code, Version 5.0. ICG, Minneapolis (2011)

  38. Rigby, D.B.: Influence of lithophysal geometry on the uniaxial compression of tuff-like rock. Nevada System of Higher Education (2007)

  39. Jacob, B.: Dynamics of Fluids in Porous Media. Courier Corporation, North Chelmsford, Massachusetts, United States (1972)

  40. Harrison, J.P.; Hudson, J.A.: Engineering Rock Mechanics—An Introduction to the Principles. Elsevier, Amsterdam (2000)

    Google Scholar 

  41. Gitman, I.M.; Askes, H.; Sluys, L.J.: Representative volume: existence and size determination. Eng. Fract. Mech. 74(16), 2518–2534 (2007)

    Article  Google Scholar 

  42. Min, K.B.; Jing, L.; Stephansson, O.: Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeol. J. 12(5), 497–510 (2004)

    Article  Google Scholar 

  43. Koyama, T.; Jing, L.: Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—a particle mechanics approach. Eng. Anal. Bound. Elem. 31(5), 458–472 (2007)

    Article  MATH  Google Scholar 

  44. Gao, F.Q.; Stead, D.: The application of a modified voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 68(68), 1–14 (2014)

    Google Scholar 

  45. Barnes, R.: Variogram Tutorial. Golden Software Inc (2004)

Download references

Acknowledgements

Financial support for this work was provided by the National Key R&D Program of China (2016YFC0801401, 2016YFC0600708), the National Natural Science Foundation of China (No. 51374200) and the Natural Science Foundation of Jiangsu Province (No. BK20140208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihao Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tu, S. & Bai, Q. Evaluation of Pore Size and Distribution Impacts on Uniaxial Compressive Strength of Lithophysal Rock. Arab J Sci Eng 43, 1235–1246 (2018). https://doi.org/10.1007/s13369-017-2810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2810-x

Keywords

Navigation