Skip to main content
Log in

Extension of TOPSIS Method and its Application in Investment

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Technique for order preference by similarity to an ideal solution (TOPSIS) is an effective technique to solve multi-criteria decision-making problem. It aims to select the alternative, which has the “shortest distance” from positive ideal solution (PIS) and the “farthest distance” from negative ideal solution (NIS). Nevertheless, much literature has demonstrated that the solution calculated by TOPSIS only is the compromise of PIS and NIS, and it is of great restriction in dealing with the practical problems which have diverse demands and properties. Therefore, in the presented model, an optimism coefficient is defined to expand the physical meaning of the standard TOPSIS. Decision-makers (DMs) can describe their attitudes toward risk and profit by changing the value of optimism coefficient. Furthermore, intuitionistic fuzzy number is introduced to measure the evaluations (linguistic values) of DMs to alternatives under diverse criteria. Intuitionistic fuzzy weighted averaging operator is used for fusing the judgments of all DMs. Finally, a conclusion can be safely obtained that the proposed model is stable and validity from the illustrative examples and sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debnath, A.; Majumder, M.; Pal, M.: Potential of fuzzy-ELECTRE MCDM in evaluation of cyanobacterial toxins removal methods. Arab. J. Sci. Eng. 41(10), 3931–3944 (2016)

    Article  Google Scholar 

  2. Jang, W.; Hong, H.U.; Han, S.H.; Baek, S.W.: Optimal supply vendor selection model for LNG plant projects using fuzzy-TOPSIS theory. J. Manag. Eng. 33(2), 04016035 (2017)

    Article  Google Scholar 

  3. Peng, Y.; Wang, G.; Kou, G.; Shi, Y.: An empirical study of classification algorithm evaluation for financial risk prediction. Appl. Soft Comput. 11(2), 2906–2915 (2011)

    Article  Google Scholar 

  4. Quader, M.A.; Ahmed, S.: A hybrid fuzzy mcdm approach to identify critical factors and co 2 capture technology for sustainable iron and steel manufacturing. Arab. J. Sci. Eng. 41(11), 1–20 (2016)

    Article  Google Scholar 

  5. Rudnik, K.; Kacprzak, D.: Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system. Appl. Soft Comput. 52, 1020–1041 (2017)

    Article  Google Scholar 

  6. Toklu, M.C.; Erdem, M.B.; Taskin, H.: A fuzzy sequential model for realization of strategic planning in manufacturing firms. Comput. Ind. Eng. 102, 512–519 (2016)

    Article  Google Scholar 

  7. Arasteh, A.; Aliahmadi, A.: A multi-stage multi criteria model for portfolio management. Arab. J. Sci. Eng. 39(5), 4269–4283 (2014)

    Article  Google Scholar 

  8. Sadoddin, A.; Sheikh, V.; Mostafazadeh, R.; Halili, M.G.: Analysis of vegetation-based management scenarios using mcdm in the ramian watershed, golestan, iran. Int. J. Plant Prod. 4(1), 1735–6814 (2010)

    Google Scholar 

  9. Lin, K.P.; Hung, K.C.: An efficient fuzzy weighted average algorithm for the military uav selecting under group decision-making. Knowl. Based Syst. 24(6), 877–889 (2011)

    Article  Google Scholar 

  10. Opricovic, S.; Tzeng, G.H.: Compromise solution by mcdm methods: a comparative analysis of vikor and topsis. Eur. J. Oper. Res. 156(2), 445–455 (2004)

    Article  MATH  Google Scholar 

  11. Yu, P.L.: A class of solutions for group decision problems. Manag. Sci. 19(8), 936–946 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zeleny, M.: Multiple Criteria Decision Making. Springer, New York (1980)

    MATH  Google Scholar 

  13. Tong, L.I.; Chen, C.C.; Wang, C.H.: Optimization of multi-response processes using the vikor method. Int. J. Adv. Manuf. Technol. 31(11), 1049–1057 (2007)

    Article  Google Scholar 

  14. Opricovic, S.; Tzeng, G.H.: Extended vikor method in comparison with outranking methods. Eur. J. Oper. Res. 178(2), 514–529 (2007)

    Article  MATH  Google Scholar 

  15. Ma, L.; Zhang, Y.; Zhao, Z.: Improved vikor algorithm based on ahp and shannon entropy in the selection of thermal power enterprise’s coal suppliers. In: International Conference on Information Management, Innovation Management and Industrial Engineering, pp. 129–133 (2009)

  16. Sanayei, A.; Mousavi, S.F.; Yazdankhah, A.: Group decision making process for supplier selection with vikor under fuzzy environment. Expert Syst. Appl. 37(1), 24–30 (2010)

    Article  Google Scholar 

  17. Devi, K.: Extension of vikor method in intuitionistic fuzzy environment for robot selection. Expert Syst. Appl. 38(11), 14163–14168 (2011)

    Google Scholar 

  18. Yang, Y.P.O.; Shieh, H.M.; Tzeng, G.H.: A vikor technique based on dematel and anp for information security risk control assessment. Inf. Sci. 232(5), 482–500 (2013)

    Article  Google Scholar 

  19. Huang, K.W.; Huang, J.H.; Tzeng, G.H.: New hybrid multiple attribute decision-making model for improving competence sets: enhancing a companys core competitiveness. Sustainability 8(2), 175 (2016)

    Article  Google Scholar 

  20. Hwang, C.L.; Yoon, K.: Multiple Attribute Decision Making, vol. 186. Computer Science University of Southampton UK Her, Southampton (1995)

    Google Scholar 

  21. Tsaur, S.H.; Chang, T.Y.; Yena, C.H.: The evaluation of airline service quality by fuzzy mcdm. Tour. Manag. 23(2), 107–115 (2002)

    Article  Google Scholar 

  22. Jahanshahloo, G.R.; Lotfi, F.H.; Izadikhah, M.: An algorithmic method to extend topsis for decision-making problems with interval data. Appl. Math. Comput. 175(2), 1375–1384 (2006)

    MATH  Google Scholar 

  23. Chu, T.: Facility location selection using fuzzy topsis under gropu decision. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(6), 687–701 (2012)

    Article  Google Scholar 

  24. Chu, T.C.: Selecting plant location via a fuzzy topsis approach. Int. J. Adv. Manuf. Technol. 20(20), 859–864 (2002)

    Article  Google Scholar 

  25. Triantaphyllou, E.; Lin, C.T.: Development and evaluation of five fuzzy multiattribute decision-making methods. Int. J. Approx. Reason. 14(4), 281–310 (1996)

    Article  MATH  Google Scholar 

  26. Jiang, W.; Xie, C.; Luo, Y.; Tang, Y.: Ranking z-numbers with an improved ranking method for generalized fuzzy numbers. J. Intell. Fuzzy Syst. 32(3), 1931–1943 (2017). doi:10.3233/JIFS-16139

    Article  MATH  Google Scholar 

  27. Kuo, T.: A modified TOPSIS with a different ranking index. Eur. J. Oper. Res. 260(1), 152–160 (2017)

    Article  MathSciNet  Google Scholar 

  28. Yaakob, A.M.; Serguieva, A.; Gegov, A.: FN-TOPSIS: fuzzy networks for ranking traded equities. IEEE Trans. Fuzzy Syst. 25(2, SI), 315–332 (2017)

    Article  Google Scholar 

  29. Walczak, D.; Rutkowska, A.: Project rankings for participatory budget based on the fuzzy TOPSIS method. Eur. J. Oper. Res. 260(2), 706–714 (2017)

    Article  MathSciNet  Google Scholar 

  30. Hu, J.; Du, Y.; Mo, H.; Wei, D.; Deng, Y.: A modified weighted topsis to identify influential nodes in complex networks. Phys. A Stat. Mech. Appl. 444, 73–85 (2016)

    Article  MathSciNet  Google Scholar 

  31. Kang, B.; Hu, Y.; Deng, Y.; Zhou, D.: A new methodology of multicriteria decision-making in supplier selection based on Z-numbers. Math. Probl. Eng. (2016). doi:10.1155/2016/8475987

  32. Zhang, X.; Deng, Y.; Chan, F.T.S.; Adamatzky, A.; Mahadevan, S.: Supplier selection based on evidence theory and analytic network process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 230(3), 562–573 (2016). doi:10.1177/0954405414551105

    Article  Google Scholar 

  33. Lu, C.; You, J.X.; Liu, H.C.; Li, P.: Health-care waste treatment technology selection using the interval 2-tuple induced topsis method. Int. J. Environ. Res. Public Health 13(6), 562 (2016)

    Article  Google Scholar 

  34. Afsordegan, A.; Snchez, M.; Agell, N.; Zahedi, S.; Cremades, L.V.: Decision making under uncertainty using a qualitative topsis method for selecting sustainable energy alternatives. Int. J. Environ. Sci. Technol. 13(6), 1–14 (2016)

    Article  Google Scholar 

  35. Mo, H.; Deng, Y.: A new aggregating operator in linguistic decision making based on d numbers. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 24(6), 831–846 (2016)

    Article  Google Scholar 

  36. Wang, J.; Hu, Y.; Xiao, F.; Deng, X.; Deng, Y.: A novel method to use fuzzy soft sets in decision making based on ambiguity measure and Dempster–Shafer theory of evidence: an application in medical diagnosis. Artif. Intell. Med. 69, 1–11 (2016)

    Article  Google Scholar 

  37. Zhou, X.; Shi, Y.; Deng, X.; Deng, Y.: D-DEMATEL: a new method to identify critical success factors in emergency management. Saf. Sci. 91, 93–104 (2017)

    Article  Google Scholar 

  38. Deng, X.; Jiang, W.; Zhang, J.: Zero-sum matrix game with payoffs of Dempster–Shafer belief structures and its applications on sensors. Sensors 17(4), 922 (2017). doi:10.3390/s17040922

    Article  Google Scholar 

  39. Fei, L.; Hu, Y.; Xiao, F.; Chen, L.; Deng, Y.: A modified TOPSIS method based on D numbers and its applications in human resources Selection. Math. Probl. Eng. (2016). doi:10.1155/2016/6145196

  40. Wang, N.; Liu, F.; Wei, D.: A modified combination rule for D numbers theory. Math. Probl. Eng. (2016). doi:10.1155/2016/3596517

  41. Zhou, X.; Deng, X.; Deng, Y.; Mahadevan, S.: Dependence assessment in human reliability analysis based on d numbers and ahp. Nucl. Eng. Des. 313, 243–252 (2017)

    Article  Google Scholar 

  42. Deng, X.; Xiao, F.; Deng, Y.: An improved distance-based total uncertainty measure in belief function theory. Appl. Intell. (2017, in press). doi:10.1007/s10489-016-0870-3

  43. Jiang, W.; Zhan, J.: A modified combination rule in generalized evidence theory. Appl. Intell. 46(3), 630–640 (2017). doi:10.1007/s10489-016-0851-6

    Article  Google Scholar 

  44. Wang, J.; Xiao, F.; Deng, X.; Fei, L.; Deng, Y.: Weighted evidence combination based on distance of evidence and entropy function. Int. J. Distrib. Sens. Netw. 12(7) (2016). doi:10.1177/155014773218784

  45. Bazzazi, A.A.; Osanloo, M.; Karimi, B.: Deriving preference order of open pit mines equipment through madm methods: application of modified vikor method. Expert Syst. Appl. 38(3), 2550–2556 (2011)

    Article  Google Scholar 

  46. Sayadi, M.K.; Heydari, M.; Shahanaghi, K.: Extension of vikor method for decision making problem with interval numbers. Appl. Math. Model. 33(5), 2257–2262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  49. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 14(6), 1179–1187 (2008)

    Google Scholar 

  50. Xu, Z.; Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35(4), 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, Z.; Cai, X.: Dynamic intuitionistic fuzzy multi-attribute decision making. Int. J. Approx. Reason. 48(1), 246–262 (2008)

    Article  MATH  Google Scholar 

  52. Boran, F.E.; Genc, S.; Kurt, M.; Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36(8), 11363–11368 (2009)

    Article  Google Scholar 

  53. Jiang, W.; Xie, C.; Zhuang, M.; Shou, Y.; Tang, Y.: Sensor data fusion with z-numbers and its application in fault diagnosis. Sensors 16(9), 1509 (2016)

    Article  Google Scholar 

  54. Jiang, W.; Xie, C.; Zhuang, M.; Tang, Y.: Failure mode and effects analysis based on a novel fuzzy evidential method. Appl. Soft Comput. 57, 672–683 (2017)

    Article  Google Scholar 

  55. Yang, J.; Huang, H.Z.; He, L.P.; Zhu, S.P.; Wen, D.: Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty. Eng. Fail. Anal. 18(8), 2084–2092 (2011)

    Article  Google Scholar 

  56. Guo, S.; Zhao, H.; Yan, J.: Optimal site selection of electric vehicle charging station by using fuzzy topsis based on sustainability perspective. Appl. Energy 158, 390–402 (2015)

    Article  Google Scholar 

  57. Liu, H.C.; You, J.X.; Shan, M.M.; Shao, L.N.: Failure mode and effects analysis using intuitionistic fuzzy hybrid topsis approach. Soft Comput. 19(4), 1085–1098 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by National Natural Science Foundation of China (Grant No. 61671384), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2016JM6018), Aviation Science Foundation (Program No. 20165553036), the Fund of Shanghai Aerospace Science and Technology SAST(Program No. SAST2016083), the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Program No. Z2017142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Jiang, W. Extension of TOPSIS Method and its Application in Investment. Arab J Sci Eng 43, 693–705 (2018). https://doi.org/10.1007/s13369-017-2736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2736-3

Keywords

Navigation