Skip to main content

Advertisement

Log in

A Hybrid Fuzzy MCDM Approach to Identify Critical Factors and CO2 Capture Technology for Sustainable Iron and Steel Manufacturing

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The iron and steel industry is known as the largest energy-consuming and CO2-emitting manufacturing sector in the world. Therefore, investigation, development and deployment of alternative energy-efficient iron-making breakthrough technologies along with CO2 capture technology are receiving high priority to mitigate environmental concerns by reducing pollutants and greenhouse gas emissions of around level 50 % by 2050 compared to 2007. This research evaluates the CCS systems in the iron and steel industry considering four prominent aspects (engineering, economic, environmental and social) of sustainability using questionnaire with group of experts having relevant experience. A novel hybrid multi-criteria decision model is proposed integrating Delphi, 2-tuple decision-making trial and evaluation laboratory, and extent analysis method on fuzzy AHP to select the dimensions and critical factors for evaluating alternative iron-making technologies with CCS systems. Case studies are conducted in iron and steel industries in Malaysia and Bangladesh to illustrate the proposed framework and to demonstrate its usefulness and validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helle, H.: Towards Sustainable Iron-and Steelmaking with Economic Optimization. National Library of Finland, University of Helsinki (2014)

  2. Huitu K. et al.: Optimization of steelmaking using fastmet direct reduced iron in the blast furnace. ISIJ Int. 53(12), 2038–2046 (2013)

    Article  Google Scholar 

  3. Patel P., Seetharaman S.: A test of the steel industry’s metal. MRS Bull. 38(09), 680–681 (2013)

    Article  Google Scholar 

  4. Remus, R., et al.: Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control. Publications Office, Netherlands (2013)

  5. Mandil C.: Tracking Industrial Energy Efficiency and CO2 Emissions. IEA, Paris (2007)

    Google Scholar 

  6. Kuramochi T. et al.: Techno-economic assessment and comparison of CO2 capture technologies for industrial processes: Preliminary results for the iron and steel sector. Energy Proc. 4, 1981–1988 (2011)

    Article  Google Scholar 

  7. Iea U.: Technology Roadmap Carbon Capture and Storage in Industrial Applications. OECD Publishing, Paris (2011)

    Google Scholar 

  8. Birol, F.: World Energy Outlook 2010. International Energy Agency, Paris, France (2010)

  9. Tanaka N.: Energy Technology Perspectives 2008-Scenarios and Strategies to 2050. OECD/IEA, Paris (2008)

    Google Scholar 

  10. Agency I.E.: Technology Roadmap—Carbon Capture and Storage in Industrial Applications. International Energy Agency (IEA), Paris (2013)

    Google Scholar 

  11. Pardo N., Moya J.A.: Prospective scenarios on energy efficiency and CO2 emissions in the European iron & steel industry. Energy 54, 113–128 (2013)

    Article  Google Scholar 

  12. Milford R.L. et al.: The roles of energy and material efficiency in meeting steel industry CO2 targets. Environ. Sci. Technol. 47(7), 3455–3462 (2013)

    Article  Google Scholar 

  13. Wilday J., Bilio M.: Safety issues for carbon capture and storage. Process Saf. Environ. Prot. 92(1), 1–2 (2014)

    Article  Google Scholar 

  14. Spigarelli, B.P.; Kawatra, S.K.: Opportunities and challenges in carbon dioxide capture. J. CO2 Util. 1, 69–87 (2013)

  15. Sreenivasulu B. et al.: A journey into the process and engineering aspects of carbon capture technologies. Renew. Sustain. Energy Rev. 41, 1324–1350 (2015)

    Article  Google Scholar 

  16. Watson J., Kern F., Markusson N.: Resolving or managing uncertainties for carbon capture and storage: Lessons from historical analogues. Technol. Forecast. Soc. Change 81, 192–204 (2014)

    Article  Google Scholar 

  17. Prabhu T.R., Vizayakumar K.: Technology choice using FHDM: a case of iron-making technology. IEEE Trans. Eng. Manag. 48(2), 209–222 (2001)

    Article  Google Scholar 

  18. Prabhu T.R., Vizayakumar K.: Technology choice using FHDM: a case of iron-making technology. IEEE Trans. Eng. Manag. 48(2), 209–222 (2001)

    Article  Google Scholar 

  19. Hansmann R., Mieg H.A., Frischknecht P.: Principal sustainability components: empirical analysis of synergies between the three pillars of sustainability. Int. J. Sustain. Dev. World Ecol. 19(5), 451–459 (2012)

    Article  Google Scholar 

  20. Gabus A., Fontela E.: World Problems, an Invitation to Further Thought Within the Framework of DEMATEL. Battelle Geneva Research Center, Geneva (1972)

    Google Scholar 

  21. Zadeh L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kahraman C., Cebeci U., Ruan D.: Multi-attribute comparison of catering service companies using fuzzy AHP: the case of Turkey. Int. J. Prod. Econ. 87(2), 171–184 (2004)

    Article  Google Scholar 

  23. Chan F.T., Kumar N.: Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega 35(4), 417–431 (2007)

    Article  Google Scholar 

  24. Kilincci O., Onal S.A.: Fuzzy AHP approach for supplier selection in a washing machine company. Expert Syst. Appl. 38(8), 9656–9664 (2011)

    Article  Google Scholar 

  25. Chang D.-Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95(3), 649–655 (1996)

    Article  MATH  Google Scholar 

  26. Rowe, G.; Wright, G.: Expert opinions in forecasting: the role of the Delphi technique. In: Principles of Forecasting, pp. 125–144. Springer, Berlin (2001)

  27. Rowe G., Wright G.: The Delphi technique as a forecasting tool: issues and analysis. Int. J. Forecast. 15(4), 353–375 (1999)

    Article  Google Scholar 

  28. Clayton M.J.: Delphi: a technique to harness expert opinion for critical decision-making tasks in education. Educ. Psychol. 17(4), 373–386 (1997)

    Article  Google Scholar 

  29. Zopounidis, C.; Pardalos, P.: Handbook of Multicriteria Analysis, vol. 103. Springer, Berlin (2010)

  30. Chalmers H. et al.: Analysing uncertainties for CCS: from historical analogues to future deployment pathways in the UK. Energy Proc. 37, 7668–7679 (2013)

    Article  Google Scholar 

  31. Sano F. et al.: Analysis of CCS diffusion for CO2 emission reduction considering technology diffusion barriers in the real world. Energy Proc. 37, 7582–7589 (2013)

    Article  Google Scholar 

  32. Rhee C.H. et al.: Process analysis for ammonia-based CO2 capture in ironmaking industry. Energy Proc. 4, 1486–1493 (2011)

    Article  Google Scholar 

  33. Yincheng G., Zhenqi N., Wenyi L.: Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column. Energy Proc. 4, 512–518 (2011)

    Article  Google Scholar 

  34. Han K., Ahn C.K., Lee M.S.: Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry. Int. J. Greenh. Gas Control 27, 239–246 (2014)

    Article  Google Scholar 

  35. Saima W.H., Mogi Y., Haraoka T.: Development of PSA system for the recovery of carbon dioxide and carbon monoxide from blast furnace gas in steel works. Energy Proc. 37, 7152–7159 (2013)

    Article  Google Scholar 

  36. Eide J., Herzog H., Webster M.: Rethinking CCS-developing quantitative tools for analyzing investments in CCS. Energy Proc. 37, 7647–7667 (2013)

    Article  Google Scholar 

  37. Koelbl B. et al.: Uncertainty in the deployment of carbon capture and storage (CCS): a sensitivity analysis to techno-economic parameter uncertainty. Int. J. Greenh. Gas Control 27, 81–102 (2014)

    Article  Google Scholar 

  38. Arasto A. et al.: Costs and potential of carbon capture and storage at an integrated steel mill. Energy Proc. 37, 7117–7124 (2013)

    Article  Google Scholar 

  39. Zapp P. et al.: Overall environmental impacts of CCS technologies—a life cycle approach. Int. J. Greenh. Gas Control 8, 12–21 (2012)

    Article  Google Scholar 

  40. Corsten M. et al.: Environmental impact assessment of CCS chains–lessons learned and limitations from LCA literature. Int. J. Greenh. Gas Control 13, 59–71 (2013)

    Article  Google Scholar 

  41. Mao X. et al.: Co-control of local air pollutants and CO2 in the Chinese iron and steel industry. Environ. Sci. Technol. 47(21), 12002–12010 (2013)

    Article  Google Scholar 

  42. Petrakopoulou F., Tsatsaronis G.: Can carbon dioxide capture and storage from power plants reduce the environmental impact of electricity generation?. Energy Fuels 28(8), 5327–5338 (2014)

    Article  Google Scholar 

  43. Burchart-Korol D.: Life cycle assessment of steel production in Poland: a case study. J. Clean. Prod. 54, 235–243 (2013)

    Article  Google Scholar 

  44. Karayannis V., Charalampides G., Lakioti E.: Socio-economic aspects of CCS technologies. Proc. Econ. Finance 14, 295–302 (2014)

    Article  Google Scholar 

  45. Steeper T.: CO2CRC otway project social research: assessing CCS community consultation. Energy Proc. 37, 7454–7461 (2013)

    Article  Google Scholar 

  46. Watson J., Kern F., Markusson N.: Resolving or managing uncertainties for carbon capture and storage: lessons from historical analogues. Technol. Forecast. Soc. Change 81, 192–204 (2014)

    Article  Google Scholar 

  47. IEAGHG: Incorporation Future Technological Improvements in Existing CO2 Post Combustion Capture Plants: Technical Review. IEA Greenhouse Gas R&D Program, Report 2013/TR5 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdul Quader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quader, M.A., Ahmed, S. A Hybrid Fuzzy MCDM Approach to Identify Critical Factors and CO2 Capture Technology for Sustainable Iron and Steel Manufacturing. Arab J Sci Eng 41, 4411–4430 (2016). https://doi.org/10.1007/s13369-016-2134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2134-2

Keywords

Navigation