Skip to main content
Log in

A numerical study on the impact of thermal alterations in porous media during hot fluid injection process employing a modified Boussinesq model

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The Oberbeck-Boussinesq (OB) approximation is widely employed as a simplifying assumption for density-dependent flow problems. It reduces the governing differential equations to simpler forms, which can be handled analytically or numerically. In this study, a modified OB model is formulated to account for the variation of rock permeability and porosity with temperature during the hot fluid injection process in an oil-saturated porous medium under the assumption of local thermal equilibrium (LTE). The mathematical model is solved numerically using a fully implicit control volume finite difference discretization with the successive over relaxation (SOR) method to handle the non-linearity. Subsequently, the numerical model is validated with the analytical solution of the simplified problem successfully. Through detailed sensitivity analyses, the simulation results reveal the hot fluid injection rate as the most important operational parameter to be optimized for a successful thermal flood. The numerical runs show that that for single-phase core-flood simulation, the effect of temperature on the rock absolute permeability and porosity can be neglected without introducing any significant errors in the estimated recovery and temperature profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boussinesq, J.: Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Gauthier-Villars (1903)

  2. Oberbeck, A.: Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. 243, 271–292 (1879)

    Article  Google Scholar 

  3. Gartling, D., Hickox, C.: A numerical study of the applicability of the Boussinesq approximation for a fluid saturated porous medium. J. Numer. Methods Fluids 5, 19 (1985)

    Article  Google Scholar 

  4. Karra, P.S., Aziz, K.: A numerical study of transient natural convection in porous media. In: Proceedings of 17th Annual Conference of Canadian Society of Chemical Engineeres, Ontario (1967)

  5. Asai, T., Nakasuji, I.: Applicability Of Boussinesq approximation to thermal instability in a shear flow. Spec. Contrib. Geophys. Institute, Kyoto Univ. 10, 49–57 (1970)

    Google Scholar 

  6. Barletta, A.: Local energy balance, specific heats and the Oberbeck-Boussinesq approximation. Int. J. Heat Mass Transf. 52, 5266–5270 (2009)

    Article  Google Scholar 

  7. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-deVries scaling limits. Commun. Partial Differ. Equ. 10, 787–1003 (1985)

    Article  Google Scholar 

  8. Dirksen, C.: Natural convection in porous media and its effect on segregated forward combustion. Soc. Pet. Eng. J. 6, 267–280 (1966)

    Article  Google Scholar 

  9. Feireisl, E., Schonbek, M.E.: On the Oberbeck-Boussinesq approximation on unbounded domains. In: Nonlinear Partial Differential Equations: The Abel Symposium 2010, pp. 131–168 (2012)

  10. Gray, D.D., Giorgini, A.: The validity of the boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19, 545–551 (1976)

    Article  Google Scholar 

  11. Graf, T.: Simulation of geothermal flow in deep sedimentary basins in Alberta. Alberta Energy Resources Conservation Board (2009)

  12. Guevara, C., Graf, T.: Evaluation of the Oberbeck-Boussinesq approximation for the numerical simulation of variable-density flow and solute transport in porous media. In: EGU General Assembly Conference Abstracts, p. 3114 (2013)

  13. Kolditz, O., Ratke, R., Diersch, H.-J.G., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv. Water Resour. 21, 27–46 (1998)

    Article  Google Scholar 

  14. Hossain, M.E., Mousavizadegan, S.H., Islam, M.R.: The effects of thermal alterations on formation permeability and porosity. Pet. Sci. Technol. 26, 1282–1302 (2008)

    Article  Google Scholar 

  15. Marpu, D., Satyamurty, V.: Investigations on the validity of Boussinesq approximation on free convection in vertical porous annulus. Wärme-und Stoffübertragung 147, 141–147 (1991)

    Article  Google Scholar 

  16. Peirotti, M.B., Giavedoni, M.D., Deiber, J.A.: Natural convective heat transfer in a rectangular porous cavity with variable fluid properties—validity of the Boussinesq approximation (1987)

  17. Johannsen, K.: On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7, 169–182 (2003)

    Article  Google Scholar 

  18. Landman, A.J., Schotting, R.J.: Transp. Porous. Med. 70, 355 (2007). doi:10.1007/s11242-007-9104-9

  19. Hadjisophocleous, G. V, Sousa, A.C.M.: Three-dimensional numerical predictions of internally heated free convective flows. Wärme-und Stoffübertragung 21, 283–290 (1987)

    Article  Google Scholar 

  20. Rudraiah, N., S.T.N.: Natural convection through vertical porous media. Int. J. Eng. Sci. 15, 589–600 (1977)

    Article  Google Scholar 

  21. Hossain, M.A., Wilson, M.: Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation. Int. J. Therm. Sci. 41, 447–454 (2002)

    Article  Google Scholar 

  22. Khanafer, K.M., Chamkha, A.J.: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int. J. Heat Mass Transf. 42, 2465–2481 (1999)

    Article  Google Scholar 

  23. Harfash, A.J.: Three-dimensional simulations for convection problem in anisotropic porous media with nonhomogeneous porosity, thermal diffusivity, and variable gravity effects. Transp. Porous Media 102, 43–57 (2014)

    Article  Google Scholar 

  24. Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp. Porous Media 85, 233–258 (2010)

    Article  Google Scholar 

  25. Civan, F.: Porous media transport phenomena. Wiley, New York (2011)

    Book  Google Scholar 

  26. Weinbrandt, R.M., Ramey, H.J., Casse, F.J.: The effect of temperature on relative and absolute permeability of sandstones. Soc. Pet. Eng. J. 15, 376–384 (1975)

    Article  Google Scholar 

  27. Bauman, J.H.: Significant parameter identification and characterization of complex in situ reservoir simulations (2012)

  28. App, J.F.: Field cases: nonisothermal behavior due to Joule-Thomson and transient fluid expansion/compression effects. In: SPE Annual Technical Conference and Exhibition, 4–7 October, New Orleans, Louisiana (2009)

  29. Latham, J.-P., Xiang, J., Belayneh, M., Nick, H.M., Tsang, C.-F., Blunt, M.J.: Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int. J. Rock Mech. Min. Sci. 57, 100–112 (2013)

    Google Scholar 

  30. Nield, D.A., Bejan, A.: Convection in porous media. Springer, New York (2006)

    Google Scholar 

  31. Nield, D.A.: Modelling fluid flow and heat transfer in a saturated porous medium (2000)

  32. Patankar, S.: Series in Computational Methods in Mechanics and Thermal Sciences, pp. 1–197. In: Minkowycz, W.J., Sparrow, E.M. (eds.) . McGraw-Hill Book Company, New York (1980)

  33. Chai, J.C., Parthasarathy, G., Lee, H.S., Patankar, S. V: Finite volume radiative heat transfer procedure for irregular geometries. J. Thermophys. Heat Transf. 9, 410–415 (1995)

    Article  Google Scholar 

  34. Barends, F.: Complete solution for transient heat transport in porous media, following Lauwerier’s Concept. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010)

  35. Cheppelear, J.E., Volek, C.W.: The injection of a hot liquid into a porous medium. Soc. Pet. Eng. J. 9, 100–114 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST), through the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), for funding this work through project no. 11-OIL1661-04, as part of the National Science, Technology and Innovation Plan (NSTIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enamul Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obembe, A.D., Hossain, M.E. & Rached, BM. A numerical study on the impact of thermal alterations in porous media during hot fluid injection process employing a modified Boussinesq model. Comput Geosci 22, 63–80 (2018). https://doi.org/10.1007/s10596-017-9670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9670-z

Keywords

Navigation