Skip to main content
Log in

Adsorption of Reactive Black-5 by Pine Needles Biochar Produced Via Catalytic and Non-catalytic Pyrolysis

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Biomass derived biochar is increasingly recognized as an environmental-friendly sorbent to halt organic pollutants. This study explores the opportunity of managing pine needles waste by converting them into biochar sorbent through catalytic and non-catalytic pyrolysis, carried out at 450 °C. The difference in the biochar yield was not very obvious under catalytic and non-catalytic pyrolysis. The obtained biochars were characterized using X-ray diffraction analysis, energy-dispersive X-ray spectroscopy and scanning electron microscopy. Adsorption of Reactive Black-5 (RB-5) in aqueous solution by produced biochar was studied. The effect of adsorbent dose in batch-mode experiments was investigated. The equilibrium adsorption data of RB-5 were analyzed by Langmuir and Freundlich models. Langmuir isotherms best described the adsorption data with higher correlation coefficient R 2 values (R 2 = 0.983, R 2 = 0.995 and R 2 = 0.941). The maximum RB-5 adsorption capacities q e(mg g−1) of elemental copper and cuprite (Cu–Cu2 O)-based char, magnetite (Fe3O4)-based char and non-catalytically produced char from Langmuir model were 5.40, 2.82 and 4.37 mg g−1, respectively at 0.1 g adsorbent dose. These results indicated that the biochars are suitable to be used as an adsorbent for RB-5 removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madhusudhana N., Yogendra K., Mahadevan K.M., Naik S.: Photocatalytic degradation of Coralene Dark Red 2-B azo dye using calcium zincate nanoparticle in presence of natural sunlight: an aid to environmental remediation. Int. J. Chem. Eng. Appl. 2, 301–305 (2011)

    Google Scholar 

  2. Daneshvar N., Ayazloo M., Khatae A.R., Pourhassan M.: Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour. Technol. 98, 1176–1182 (2007)

    Article  Google Scholar 

  3. Afkhami A., Madrakian T., Amini A., Karimi Z.: Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions. J. Hazard. Mater. 150, 408–412 (2008)

    Article  Google Scholar 

  4. Robinson T., McMullan G., Marchant R., Nigam P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001)

    Article  Google Scholar 

  5. Grluk M., Hubicki Z.: Kinetics; isotherm and thermodynamic studies of Reactive Black 5 removal by acid acrylic resins. Chem. Eng. J. 162, 919–926 (2010)

    Article  Google Scholar 

  6. Al-Degs Y., Khraisheh M.A.M., Allen S.J., Ahmad M.N.: Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 34, 927–935 (2000)

    Article  Google Scholar 

  7. Gulnaz O., Kaya A., Dincer S.: The reuse of dried activated sludge for adsorption of reactive dye. J. Hazard. Mater. 134, 190–196 (2005)

    Article  Google Scholar 

  8. Yousefi N., Fatehizadeh A., Azizi E., Ahmadian M., Ahmadi A., Rajabizadeh A., Toolabi A.: Adsorption of Reactive Black 5 dye onto modified wheat straw: isotherm and kinetics study. Sacha J. Environ. Stud. 1, 81–91 (2011)

    Google Scholar 

  9. Yang Y., Lin X., Wei B., Zhao Y., Wang J.: Evaluation of adsorption potential of bamboo biochar for metal-complex dye: equilibrium, kinetics and artificial neural network modeling. Int. J. Environ. Sci. Technol. 11, 1093–1100 (2014)

    Article  Google Scholar 

  10. Heydartaemeh M.R., Ardejani F.D., Badii K., Shabani K.S., Mousavi S.E.: FeCl2/FeCl3 perlite nanoparticles as a novel magnetic material for adsorption of green malachite dye. Arab. J. Sci. Eng. 39, 3383–3392 (2014)

    Article  Google Scholar 

  11. Zhou C., Zhang W., Wang H., Li H., Zhou J., Wang S., Liu J., Luo J., Zou B., Zhou J.: Preparation of Fe3O4-embedded graphene oxide for removal of methylene blue. Arab. J. Sci. Eng. 39, 6679–6685 (2014)

    Article  Google Scholar 

  12. Liu Z., Zhang F., Wu J.: Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel 89, 510–514 (2010)

    Article  Google Scholar 

  13. Ip A.W.M., Barford J.P., Mckay G.: Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. J. Colloid Interface Sci. 337, 32–38 (2009)

    Article  Google Scholar 

  14. Heibati B., Rodriguez-Couto S., Amrane A., Rafatullah M., Hawari A., Al-Ghouti M.A.: Uptake of reactive black 5 by pumice and walnut activated carbon: chemistry and adsorption mechanisms. J. Ind. Eng. Chem. 20, 2939–2947 (2014)

    Article  Google Scholar 

  15. Aksu Z.: Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 40, 997–1026 (2005)

    Article  Google Scholar 

  16. Cascarosaa E., Becker J., Ferranteb L., Briens C., Berruti F., Arauzo J.: Pyrolysis of meat-meal and bone-meal blends in a mechanically fluidized reactor. J. Anal. Appl. Pyrolysis 91, 359–367 (2011)

    Article  Google Scholar 

  17. Gopakumar, T.S.; Al-Nadheri, W.M.A.; Jegarajan, D.; Sahu, J.N.; Mubarak, N.M.; Nizamuddin S.: Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresour. Technol. 178, 65–69 (2015)

  18. Pielichowski K., Njuguna J.: Thermal Degradation of Polymeric Materials. Rapra Technology, Shawbury (2005)

    Google Scholar 

  19. Rafatullah M., Ahmad T., Ghazali A., Sulaiman O., Danish M., Hashim R.: Oil palm biomass as a precursor of activated carbons: a review. Crit. Rev. Environ. Sci. Technol. 43, 1117–1161 (2013)

    Article  Google Scholar 

  20. Wang Z., Cao J., Wang J.: Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. J. Anal. Appl. Pyrolysis 84, 179–184 (2009)

    Article  Google Scholar 

  21. Arami-Niya A., Abnisa F., Sahfeeyan M.S., Wan Daud W.M.A., Sahu J.N.: Optimization of synthesis and characterization of palm shell-based bio-char as a by-product of bio-oil production process. BioResources 7, 246–264 (2012)

    Google Scholar 

  22. Sukiran M.A., Kheang L.S., Bakar N.A., Choo Y.M.: Production and characterization of bio-char from the pyrolysis of empty fruit bunches. Am. J. Appl. Sci. 8, 984–988 (2011)

    Article  Google Scholar 

  23. Li J., Yan R., Xiao B., Liang D.T., Lee D.H.: Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuels 22, 16–23 (2008)

    Article  Google Scholar 

  24. Mamalis A.G.: Recent advances in nanotechnology. J. Mater. Process Technol. 181, 52–58 (2007)

    Article  Google Scholar 

  25. Das S.K., Marsili E.: Bioinspired metal nanoparticle: synthesis, properties and application. In: Rahman, M.M. (ed.) Nanomaterials, pp. 253–274. InTech, Shanghai (2011)

    Google Scholar 

  26. Khalid A., Arshad M., Crowley D.: Decolorization of azo dyes by Shewanella sp. under saline conditions. Appl. Microbiol. Biotechnol. 79, 1053–1059 (2008)

    Article  Google Scholar 

  27. Al-Degs Y.S., El-Barghouthi M.I., El-Sheikh A.H., Walker G.M.: Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm. 77, 16–23 (2008)

    Article  Google Scholar 

  28. Sensoz S., Angın D.: Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields. Bioresour. Technol. 99, 5492–5497 (2008)

    Article  Google Scholar 

  29. Ates F., Sıkdag M.A.: Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel 88, 1991–1997 (2009)

    Article  Google Scholar 

  30. Sharma R.K., Bakhshi N.N.: Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals. Can. J. Chem. Eng. 69, 1071–1081 (1991)

    Article  Google Scholar 

  31. Cui H.J., Wang M.K., Fu M.L., Ci E.: Enhancing phosphorus availability in phosphorus fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soils Sediments 11, 1135–1141 (2011)

    Article  Google Scholar 

  32. Wornat M.J., Hurt R.H., Yang N.Y.C., Headley T.J.: Structural and compositional transformations of biomass chars during combustion. Combust Flame 100, 131–143 (1995)

    Article  Google Scholar 

  33. Siddiqui I., Shah M.T., Ahmed I.: X-ray diffraction (XRD) analyses of Thar, Sonda and Meting-Jhimpir coal fields Sindh. Sindh Univ. Res. J. 41, 67–74 (2009)

    Google Scholar 

  34. Cao X., Harris W.: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 101, 5222–5228 (2010)

    Article  Google Scholar 

  35. Borysiak S., Doczekalska B.: Influence of chemical modification of wood on the crystallisation of polypropylene. Eur. J. Wood Wood Prod. 64, 451–454 (2006)

    Article  Google Scholar 

  36. Koyama M., Helbert W., Imai T., Sugiyama J., Henrissat B.: Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94, 9091–9095 (1997)

    Article  Google Scholar 

  37. Kumar, M.; Gupta, R.C.; Sharma, T.: X-ray diffraction studies of Acacia and eucalyptus wood chars. J. Mater. Sci. 28, 805–810 (1993)

  38. Levendis Y.A., Flagan R.C.: Synthesis, formation and characterization of micro sized glassy carbon spheres of controlled pore structure. Carbon 27, 265–283 (1989)

    Article  Google Scholar 

  39. Kumar S., Loganathan V.A., Gupta R.B., Barnett M.O.: An Assessment of U (VI) removal from ground water using biochar produced from hydrothermal carbonization. J. Environ. Manag. 92, 2504–2512 (2011)

    Article  Google Scholar 

  40. Downie, A.; Crosky, A.; Munroe, P.: Physical properties of biochar. In: Johannes, L.; Joseph, S. Biochar for Environmental Management, Earthscan, Sterling (2009)

  41. Deveci H., Kar Y.: Adsorption of hexavalent chromium from aqueous solutions by biochars obtained during biomass pyrolysis. J. Ind. Eng. Chem. 19, 190–196 (2013)

    Article  Google Scholar 

  42. Onay O.: Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol. 88, 523–531 (2007)

    Article  Google Scholar 

  43. Haykiri-Acma H., Ersoy-Mericboyu A., Kucukbayrak S.: Effect of mineral matter of the reactivity of lignite chars. Energy Convers. Manag. 42, 11–20 (2001)

    Article  Google Scholar 

  44. Purevsuren B., Avid B., Tesche B., Davaajav Y.A.: A biochar from casein and its properties. J. Mater. Sci. 38, 2347–2351 (2003)

    Article  Google Scholar 

  45. Mohan D., Rajput S., Singh V.K., Steele P.H., Pittman C.U. Jr.: Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J. Hazard. Mater. 18, 319–333 (2011)

    Article  Google Scholar 

  46. Gong R.M., Ding Y., Lie M., Yang C., Liu H.J., Sun Y.Z.: Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigm. 64, 187–192 (2005)

    Article  Google Scholar 

  47. Tanyildizi M.S.: Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem. Eng. J. 168, 1234–1240 (2011)

    Article  Google Scholar 

  48. Bai R.S., Abraham T.E.: Biosorption of chromium (VI) from aqueous solution by Rhizopus nigricans. Bioresour. Technol. 79, 73–81 (2001)

    Article  Google Scholar 

  49. Deng L., Zhang Y., Qin J., Wang X., Zhu X.: Biosorption of Cr (VI) from aqueous solutions by nonliving green algae Cladophora albida. Miner. Eng. 22, 372–377 (2009)

    Article  Google Scholar 

  50. Zhang G., Qu J., Liu H., Cooper A.T., Wu R.: CuFe2O4/ activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere 68, 1058–1066 (2007)

    Article  Google Scholar 

  51. Hossein M.A., Behzad H., Reza Y.A., Najmeh V.: Efficiency of reactive Black 5 dye removals and determination of isotherm models in aqueous solution by use activated carbon made of walnut wood. Res. J. Chem. Environ. 16, 26–30 (2012)

    Google Scholar 

  52. Patricia C., Alves F.D., Pitwak M.C.: Adsorption of reactive black 5 from aqueous solution by zeolite from coal fly ash: equilibrium and kinetic studies. Periódico Tchê Química 8, 17–24 (2011)

    Google Scholar 

  53. Alley E.R.: Water Quality Control Handbook. McGraw Hill, New York (2000)

    Google Scholar 

  54. Mubarak N.M., Kundu A., Sahu J.N., Abdullah E.C., Jayakumar N.S.: Synthesis of palm oil empty fruit bunch magnetic pyrolytic char impregnating with FeCl3 by microwave heating technique. Biomass Bioenergy 61, 265–275 (2014)

    Article  Google Scholar 

  55. Pandolfo A.G., Hollenkamp A.F.: Carbon properties and their role in supercapacitors: review. J. Power Sources 157, 11–27 (2006)

    Article  Google Scholar 

  56. Boehm H.P.: Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994)

    Article  Google Scholar 

  57. Qiu Y., Zheng Z., Zhou Z., Sheng G.D.: Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour. Technol. 100, 5348–5351 (2009)

    Article  Google Scholar 

  58. Namasivayam C., Kavitha D.: Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm. 54, 47–58 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audil Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Rashid, A. & Younas, R. Adsorption of Reactive Black-5 by Pine Needles Biochar Produced Via Catalytic and Non-catalytic Pyrolysis. Arab J Sci Eng 40, 1269–1278 (2015). https://doi.org/10.1007/s13369-015-1601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1601-5

Keywords

Navigation