Skip to main content
Log in

Entropy Analysis of Generalized MHD Couette Flow Inside a Composite Duct with Asymmetric Convective Cooling

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The paper presents entropy analysis of MHD generalized Couette fluid flow inside a composite duct. The composite duct is composed of two parallel walls. The upper wall is uniformly moving impermeable plate, whereas the lower wall is porous strata of finite thickness with impermeable bottom. The upper plate and the bottom are asymmetrically convectively cooled. The solutions obtained for the velocity and the temperature are exploited to enumerate entropy generation. The effects of pertinent parameters on the quantities of interest are portrayed graphically and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A.: A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 101, 718–725 (1979)

    Article  Google Scholar 

  2. Bejan A.: Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 15, 1–58 (1982)

    Article  Google Scholar 

  3. Bejan A.: Entropy Generation Minimization. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  4. Mahmud S.; Fraser R.A.: Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates. Exergy 2, 140–146 (2002)

    Article  Google Scholar 

  5. Mahmud S.; Tasnim S.H.; Mamun H.A.A.: Thermodynamic analysis of mixed convection in a channel with transverse hydromagnetic effect. Int. J. Therm. Sci 42, 731–740 (2003)

    Article  Google Scholar 

  6. Yilbas B.S.; Yurusoy M.; Pakdemirli M.: Entropy analysis for non-Newtonian fluid flow in annular pipe: constant viscosity case. Entropy 6, 304–315 (2004)

    Article  MATH  Google Scholar 

  7. Haddad O.; Abuzaid M.; Al-Nimr M.: Entropy generation due to laminar incompressible forced convection flow through parallel-plates microchannel. Entropy 6, 413–426 (2004)

    Article  MATH  Google Scholar 

  8. Mahmud S.; Fraser R.A.: Flow, thermal and entropy generation characteristics inside a porous channel with viscous dissipation. Int. J. Therm. Sci. 44, 21–32 (2005)

    Article  Google Scholar 

  9. Hooman K.; Ejlali A.: Entropy generation for forced convection in a porous saturated circular tube with uniform wall temperature. Int. Commun. Heat Mass Transf. 34, 408–419 (2007)

    Article  Google Scholar 

  10. Hooman K.; Hooman F.; Mohebpour S.R.: Entropy Generation for forced convection in a porous channel with isoflux or isothermal walls. Int. J. Exergy 5, 78–96 (2008)

    Article  Google Scholar 

  11. Chauhan D.S.; Kumar V.: Effects of slip conditions on forced convection and entropy generation in a circular channel occupied by a highly porous medium: Darcy extended Brinkman–Forchheimer model. Turk. J. Eng. Environ. Sci 33, 91–104 (2009)

    Google Scholar 

  12. Makinde O.D.; Aziz A.: MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. Int. J. Therm. Sci. 49, 1813–1820 (2010)

    Article  Google Scholar 

  13. Makinde O.D.: On MHD heat and mass transfer over a moving vertical plate with a convective surface boundary condition. Can. J. Chem. Eng. 88, 983–990 (2010)

    Article  Google Scholar 

  14. Makinde O.D.; Beg O.A.: On inherent irreversibility in a reactive hydromagnetic channel flow. J. Therm. Sci. 19, 72–79 (2010)

    Article  Google Scholar 

  15. Chauhan D.S.; Olkha A.: Entropy generation and heat transfer effects on non-Newtonian fluid flow in annular pipe with naturally permeable boundaries. Int J. Energy Technol. 3(30), 1–9 (2011)

    Google Scholar 

  16. Chauhan D.S.; Rastogi P.: Heat transfer ad entropy generation in MHD flow through a porous medium past a stretching sheet. Int. J. Energy Technol. 3(15), 1–13 (2011)

    Google Scholar 

  17. Komurgoz G.; Arikoglu A.; Turker E.; Ozkol I.: Analysis of the magnetic field effect on entropy generation in an inclined channel partially filled with a porous medium. Numer. Heat Mass Transf. Part A Appl. 61, 786–799 (2012)

    Article  Google Scholar 

  18. Makinde O.D.; Eegunjobi A.S.: Effects of convective heating on entropy generation rate in a channel with permeable walls. Entropy 15, 220–233 (2013)

    Article  MathSciNet  Google Scholar 

  19. Chauhan D.S.; Kumar V.: Entropy analysis for third-grade fluid flow with temperature dependent viscosity in annulus partially filled with a porous medium. Theor. Appl. Mech. 40, 441–464 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vyas, P.; Rai, A. Entropy regime for radiative MHD Couette flow inside a channel with naturally permeable base. Int. J. Energy Technol. 5(1–9), 19 (2013)

  21. Bhargava S.K.; Sacheti N.C.: Heat transfer in generalized Couette flow of two immiscible Newtonian fluids through a porous channel: use of Brinkman model. Indian J. Technol. 27, 211–214 (1989)

    MATH  Google Scholar 

  22. Nakayama A.: Non Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid. ASME J. Fluids Eng. 114, 642–647 (1992)

    Article  Google Scholar 

  23. Chauhan D.S.; Shekhawat K.S.: Heat transfer in Couette flow of a compressible Newtonian fluid in the presence of naturally permeable boundary. J. Phys. D Appl. Phys 26, 933–936 (1993)

    Article  Google Scholar 

  24. Chauhan D.S.; Vyas P.: Heat transfer in hydromagnetic Couette flow of compressible Newtonian fluid. ASCE J. Eng. Mech. 121, 57–61 (1995)

    Article  Google Scholar 

  25. Kuznetsov A.V.: Analytical investigation of Couette flow in a composite channel partially filled with a porous medium and partially with a clear fluid. Int. J. Heat Mass Transf. 41(16), 2556–2560 (1998)

    Article  MATH  Google Scholar 

  26. Kuznetsov A.V.: Analytical investigation of heat transfer in Couette flow through a porous media utilizing Brinkman–Forchheimer-extended Darcy model. Acta Mech. 129, 13–24 (1998)

    Article  MATH  Google Scholar 

  27. Kuznetsov A.V.: Fluid flow and heat transfer analysis of Couette flow in a composite duct. Acta Mech. 140, 163–170 (2000)

    Article  MATH  Google Scholar 

  28. Chauhan D.S.; Agarwal R.: Effects of hall current on MHD Couette flow in a channel partially filled with a porous medium in a rotating disk. Meccanica 47, 405–421 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Attia H.A.; Abdeen M.A.M.; El-Meged W.A.: Transient generalized Couette flow of viscoelastic fluid through a porous medium with variable viscosity and pressure gradient. Arab. J. Sci. Eng. 38, 3451–3458 (2013)

    Article  Google Scholar 

  30. Vyas P.; Srivastava N.: Radiation effects on dissipative magnetohydrodynamic Couette flow in a composite channel. Z. Naturforsch 68, 554–566 (2013). doi:10.5560/ZNA.2013-0038

    Article  Google Scholar 

  31. Vyas P.; Srivastava N.: Radiative MHD compressible Couette flow in a parallel channel with a naturally permeable wall. Therm. Sci. 18(Suppl. 2), S573–S585 (2012)

    Google Scholar 

  32. Aziz A.: Entropy generation in pressure gradient assisted Couette flow with different thermal boundary conditions. Entropy 8, 50–62 (2006)

    Article  MATH  Google Scholar 

  33. Chauhan D.S.; Kumar V.: Heat transfer and entropy generation during compressible fluid flow in a channel partially filled with a porous medium. Int. J. Energy Technol. 14(3), 1–10 (2011)

    Google Scholar 

  34. Alazami B.; Vafai K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass transf. 44, 1735–1749 (2001)

    Article  Google Scholar 

  35. Kim S.; Russel W.B.: Modelling of porous media by renormalization of the Stokes equation. J. Fluid Mech. 154, 269–286 (1985)

    Article  MATH  Google Scholar 

  36. Aïboud S.; Saouli S.: Entropy analysis for viscoelastic magnetohydrodynamic flow over a stretching surface. Int. J. Nonlinear Mech. 45, 482–489 (2010)

    Article  Google Scholar 

  37. Woods L.C.: Thermodynamics of Fluid Systems. Oxford University Press, Oxford (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nupur Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, P., Srivastava, N. Entropy Analysis of Generalized MHD Couette Flow Inside a Composite Duct with Asymmetric Convective Cooling. Arab J Sci Eng 40, 603–614 (2015). https://doi.org/10.1007/s13369-014-1562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1562-0

Keywords

Navigation