Skip to main content
Log in

Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper a problem of fluid flow and heat transfer in Couette flow through a rigid saturated porous medium is investigated. The fluid flow occurs due to a moving wall and it is described by the Brinkman-Forchheimer-extended Darcy equation. Two heat transfer situations are considered: (A) isoflux fixed wall and insulated moving wall and (B) insulated fixed wall and isoflux moving wall. Analytical solutions for the flow velocity, temperature distribution, and for the Nusselt number are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

parameter defined in Eq. (22),\({{\operatorname{Re} _H F} \mathord{\left/ {\vphantom {{\operatorname{Re} _H F} {\sqrt {Da_H } }}} \right. \kern-\nulldelimiterspace} {\sqrt {Da_H } }}\)

B :

parameter defined in Eq. (22),\(\frac{1}{{Da_H }}\)

D :

parameter defined in Eq. (27),\({{\left\{ {1 + \sqrt {1 + \frac{2}{3}\frac{A}{B}} } \right\}} \mathord{\left/ {\vphantom {{\left\{ {1 + \sqrt {1 + \frac{2}{3}\frac{A}{B}} } \right\}} {\left\{ {1 - \sqrt {1 + \frac{2}{3}\frac{A}{B}} } \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {1 - \sqrt {1 + \frac{2}{3}\frac{A}{B}} } \right\}}}\)

Da H :

Darcy number,K/H 2

F :

Forchheimer coefficient

H :

width of the channel, m

K :

permeability of the porous medium, m2

Nu:

Nusselt number at the isoflux wall,\({{Hq''} \mathord{\left/ {\vphantom {{Hq''} {\left( {k_{eff} \left( {\tilde T_W - \tilde T_W } \right)} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {k_{eff} \left( {\tilde T_W - \tilde T_W } \right)} \right)}}\)

Re H :

Reynolds number,\(\left\langle {\rho _f } \right\rangle ^f {{\tilde u_W H} \mathord{\left/ {\vphantom {{\tilde u_W H} {\mu _f }}} \right. \kern-\nulldelimiterspace} {\mu _f }}\)

T :

dimensionless temperature,\({{\left( {\left\langle {\tilde T} \right\rangle - \tilde T_W } \right)} \mathord{\left/ {\vphantom {{\left( {\left\langle {\tilde T} \right\rangle - \tilde T_W } \right)} {\left( {\tilde T_m - \tilde T_W } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\tilde T_m - \tilde T_W } \right)}}\)

\(\left\langle {\tilde T} \right\rangle \) :

intrinsic average temperature, K

\(\tilde T_m \) :

mean temperature,\(\frac{1}{{H\tilde U}}\int\limits_0^H {\left\langle {\tilde u_f } \right\rangle \left\langle {\tilde T} \right\rangle d\tilde y,K} \)

\(\tilde T_W \) :

temperature at the isoflux wall, K

\(\left\langle {\tilde u_f } \right\rangle \) :

superficial average velocity, ms−1

u :

dimensionless velocity,\({{\left\langle {\tilde u_f } \right\rangle } \mathord{\left/ {\vphantom {{\left\langle {\tilde u_f } \right\rangle } {\tilde u_W }}} \right. \kern-\nulldelimiterspace} {\tilde u_W }}\)

\(\tilde u_W \) :

velocity of the lower plate, ms−1

\(\tilde U\) :

mean flow velocity,\(\frac{1}{H}\int\limits_0^H {\left\langle {\tilde u_f } \right\rangle d\tilde y,ms^{ - 1} } \)

\(\tilde x\) :

streamwise coordinate, m

\(\tilde y\) :

transverse coordinate, m

y :

dimensionless transverse coordinate,\({{\tilde y} \mathord{\left/ {\vphantom {{\tilde y} H}} \right. \kern-\nulldelimiterspace} H}\)

δ:

minus gradient of the dimensionless velocity at the fixed wall,\(\left. { - \frac{{du}}{{dy}}} \right|_{y = 1} \)

ε:

porosity

γ:

constant,\(\sqrt {\frac{{\mu _{eff} }}{{\mu _f }}} \)

μf :

fluid viscosity, kg m−1s−1

μeff :

effective viscosity in the Brinkman term, kg m−1s−1

ϱ:

density, kg m−3

f :

fluid

s :

solid

〈...〉:

volume average

〈...〉f :

intrinsic volume average

References

  1. Nield, D. A., Bejan, A.: Convection in porous media. New York: Springer 1992.

    Google Scholar 

  2. Kaviany, M.: Laminar flow, through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transfer28, 851–858 (1985).

    Google Scholar 

  3. Nakayama, A., Koyama, H., Kuwahara, F.: An analysis on forced convection in a channel filled with a Brinkman-Darcy porous medium: Exact and approximate solutions. Wärme Stoffübertragung23, 291–295 (1988).

    Google Scholar 

  4. Cheng, P., Hsu, C. T., Chowdhury, A.: Forced convection in the entrance region of a packed channel with asymmetric heating. ASME J. Heat Transfer110, 946–954 (1988).

    Google Scholar 

  5. Vafai, K., Kim, S. J.: Forced convection in a channel filled with a porous, medium: an exact solution. ASME J. Heat Transfer111, 1103–1106 (1989).

    Google Scholar 

  6. Nield, D. A., Junqueira, S. L. M., Lage, J. L.: Forced convection in a fluid saturated porous medium channel with isothermal or isoflux, boundaries. J. Fluid Mech.322, 201–214 (1996).

    Google Scholar 

  7. Nakayama, A.: Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid. Trans. ASME J. Fluids Eng.114, 642–647 (1992).

    Google Scholar 

  8. Daskalakis, J.: Couette flow through a porous medium of high Prandtl number fluid with temperature-dependent viscosity. Int. J. Energy Res.14, 21–26 (1990).

    Google Scholar 

  9. Bhargava, S. K., Sacheti, N. C.: Heat Transfer in generalized Couette flow of two immiscible Newtonian fluids through a porous channel: use of Brinkman model. Ind. J. Techn.27, 211–214 (1989).

    Google Scholar 

  10. Vafai, K., Kim, S. J.: Discussion of the paper by A. Hadim “Forced convection in a porous channel with localized heat sources”. ASME J. Heat Transfer117, 1097–1098 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V. Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model. Acta Mechanica 129, 13–24 (1998). https://doi.org/10.1007/BF01379647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01379647

Keywords

Navigation