Skip to main content
Log in

Response Surface Methodology Mediated Modulation of Laccase Production by Polyporus arcularius

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Screening of thirteen mushroom fungal isolates collected from Alagar Hill and Thandikudi Hill of Tamil Nadu, India, for laccase production revealed the high laccase production potential of the isolate MI 51. The mushroom isolate MI 51 was identified as Polyporus sp., based on sporophore (fruiting body) morphology and spore characteristics. Molecular identification of the fungal isolate MI 51 using primer ITS1 and ITS4 showed that isolate MI 51 shared 98 % sequence similarity with Polyporus arcularius, a basidiomycete fungus. Initial screening of production parameters using Plackett–Burman design helped in identifying the system variables/parameters which directly influenced laccase production. Laccase production by P. arcularius was optimized using central composite design (CCD) of experiments and response surface methodology (RSM) by studying influence of the growth supplements and media additives on modulating laccase production by P. arcularius. High laccase production by P. arcularius growing in basal salt medium, (9.30 IU/ml), was observed in 21 days of incubation. Results from experiments designed by CCD indicated that nearly threefold increase in laccase production (28.30 IU/ml) over the control experiments in basal salt medium could be obtained earlier at 15 days of incubation by increasing the content of the nitrogen source, yeast extract to 0.5 g/l, and by adding 250 μM CuSO4 to the basal salt medium. RSM plots showed high interaction between the variables, incubation time, yeast extract concentration, and CuSO4 concentration in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hatakka A.: Lignin-modifying enzymes from selected white rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13, 125–135 (1994)

    Article  Google Scholar 

  2. Rodriguez E., Pickard M.A., Vazquez-Duhalt R.: Industrial dye decolorization by laccases from ligninolytic fungi. Curr. Microbiol. 38, 27–32 (1999)

    Article  Google Scholar 

  3. Thurston C.F.: The structure and function of fungal laccases. Microbiology 140, 19–26 (1994)

    Article  Google Scholar 

  4. Bourbonnais R., Paice M.G.: Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 267, 99–102 (1990)

    Article  Google Scholar 

  5. Bourbonnais R., Paice M.G.: Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,29-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl. Microbiol. Biotechnol. 36, 823–827 (1992)

    Google Scholar 

  6. Minussi R.C., Pastore G.M., Duran N.: Potential applications of laccase in the food industry. Trends Food Sci. Technol. 13, 205–216 (2002)

    Article  Google Scholar 

  7. Couto S.R., Toca-Herrera J.L.: Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv. 24, 500–513 (2006)

    Article  Google Scholar 

  8. Puri S., Beg Q.K., Gupta R.: Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr. Microbiol. 44, 286–290 (2002)

    Article  Google Scholar 

  9. Balusu R., Paduru R.R., Kuravi S.K., Seenayya G., Reddy G.: Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem. 40, 3025–3030 (2005)

    Article  Google Scholar 

  10. Wang Q., Ma H., Xu W., Gong L., Zhang W., Zou D.: Short communication: ethanol production from kitchen garbage using response surface methodology. Biochem. Eng. J. 39, 604–610 (2008)

    Article  Google Scholar 

  11. Coninck D., Bouquelet J., Dumortier S., Duyme V., Verdier V., Denantes I.: Industrial media and fermentation processes for improved growth and protease production by Tetrahymena thermophila. J. Ind. Microbiol. Biotechnol. 24, 285–290 (2000)

    Article  Google Scholar 

  12. Ghanem N.B., Yusef H.H., Mahrouse H.K.: Production of Aspergillus terreus xylanase in solid state cultures: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Bioresour. Technol. 73, 113–121 (2000)

    Article  Google Scholar 

  13. Dey G., Mitra A., Banerjee R., Maiti B.R.: Enhanced production of amylase optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7, 227–231 (2001)

    Article  Google Scholar 

  14. Aravindan R., Viruthagiri T.: Statistical experimental design for evaluation of medium components for lipase production by Rhizopus arrhizus MTCC 2233. LWT—Food Sci. Technol. 42, 985–992 (2009)

    Google Scholar 

  15. Avishek M., Arun G.: Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method. Bioresour. Technol. 99, 3685–3691 (2008)

    Article  Google Scholar 

  16. Xinjun Y., Ning G., Zhenming C., Fang G., Jun S., Zhe C.: Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochem. Eng. J. 43, 266–271 (2009)

    Article  Google Scholar 

  17. Deepak V., Kalishwaralal K., Ramkumarpandian S., Babu S.V., Senthilkumar S.R., Sangiliyandi G.: Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresour. Technol. 99, 8170–8174 (2008)

    Article  Google Scholar 

  18. Quaratino D., Ciaffi M., Federici E., D’Annibale A.: Response surface methodology study of laccase production in Panus tigrinus liquid cultures. Biochem. Eng. J. 39, 236–245 (2007)

    Article  Google Scholar 

  19. Pratheebaa P., Periasamy R., Palvannan T.: Factorial design for optimization of laccase production from Pleurotus ostreatus IMI 395545 and laccase mediated synthetic dye decolorization. Ind. J. Biotechnol. 12, 236–245 (2013)

    Google Scholar 

  20. Radhika R., Roseline Jebapriya G., Joel Gnanadoss J.: Decolourization of synthetic dyes using the edible mushroom fungi Pleurotus. Pak. J. Biol. Sci. 17, 248–253 (2014)

    Article  Google Scholar 

  21. Kaul T.N.: Biology and Conservation of Mushrooms. Oxford and IBH publishing Co. Pvt. Ltd., New Delhi (1997)

    Google Scholar 

  22. Ramakrishna G., Singaracharya M.A., Lakshmipathi V.: Effluent treatment by white rot fungus Stereum ostrea. Ind. J. Microbiol. 44(2), 121–124 (2004)

    Google Scholar 

  23. Das N., Sengupta S., Mukherjee M.: Importance of laccase in vegetative growth of Pleurotus florida. Appl. Environ. Microbiol. 63, 4120–4122 (1997)

    Google Scholar 

  24. Steffen K.T., Hofritchter M., Hatakka A.: Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla. Enzyme Microb. Technol. 30, 550–555 (2002)

    Article  Google Scholar 

  25. Graham G.C., Mayer P., Henry R.J.: A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis. Biotechniques 16(1), 48–50 (1994)

    Google Scholar 

  26. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  27. Saitou N., Nei M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  28. Plackett R.L., Burman J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tukayi K., Gibson S.N., Georg M.G., Stephanie B.: Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb. Technol. 48, 195–208 (2011)

    Article  Google Scholar 

  30. DeJong E., De Vries F.P., Field J.A., Van Der Zwan R.P., De Bont J.A.M.: Isolation and screening of basidiomycetes with high peroxidative activity. Mycol. Res. 96, 1098–1104 (1992)

    Article  Google Scholar 

  31. Luterek J., Gianfreda L., Wojtas-Wasilewska M., Rogalski J., Jaszek M., Malarczyk E., Dawidowicz A., Finks-Boots M.: Screening of the wood-rotting fungi for laccase production: induction by ferulic acid, partial purification, and immobilization of laccase from the high laccase producing strain Cerrena unicolor. Acta Microbiol. Pol. 46, 297–311 (1997)

    Google Scholar 

  32. Coll P.M., Abalos J.M.F., Villanueva J.R., Santamaria R., Perez P.: Purification and characterization phenoloxidase (laccase) from the lignin degrading basidiomycete PM1. Appl. Environ. Microbiol. 59, 2607–2613 (1993)

    Google Scholar 

  33. Kiiskinen L.L., Ratto M., Kruus K.: Screening fr novel laccase-producing microbes. J. Appl. Mlcrobiol. 97, 640–646 (2004)

    Article  Google Scholar 

  34. Vishwanath B., Chandra M.S., Pallavi H., Reddy B.R.: Screening and assessment of laccase producing fungi isolated from different environmental samples. Afr. J. Biotech. 7(8), 1129–1133 (2008)

    Google Scholar 

  35. Ravikumar K., Pakshirajan K., Balu K.: Optimization of batch process parameters using RSM for dye removal by a novel adsorbent. Chem. Eng. J. 105, 131–138 (2005)

    Article  Google Scholar 

  36. Karuppaiya M., Sasikumar E., Viruthagiri T., Vijayagopal V.: Optimization of process conditions using response surface methodology for ethanol production from waste cashew apple by Zymomonas mobilis. Chem. Eng. 196, 1425–1435 (2009)

    Google Scholar 

  37. Sasikumar E., Viruthagiri T.: Simultaneous saccharification and fermentation of sugarcane bagasse in Kinetics and modeling. Chem. Eng. 19, 145–148 (2010)

    Google Scholar 

  38. Riswan Ali S.B., Muthuvelayudham R., Viruthagiri T.: Enhanced production of cellulase from tapioca stem using response surface methodology. Innov. Romanian Food Biotechnol. 12, 40–51 (2013)

    Google Scholar 

  39. Sharma P., Singh L., Dilbaghi N.: Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box–Behnken design. J. Hazard. Mater. 164, 1024–1029 (2009)

    Article  Google Scholar 

  40. Eggert C., Temp U., Eriksson K.E.: The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62, 1151–1158 (1996)

    Google Scholar 

  41. Kaal E.E.J., Field J.A., Joyce T.W.: Increasing ligninolytic enzyme activities in several white rot basidiomycetes by nitrogen sufficient media. Bioresour. Technol. 53, 133–139 (1995)

    Article  Google Scholar 

  42. Vinoth Kumar V., Dinesh K., Periyaraman P., Sivanesan S.: Screening and induction of laccase activity in fungal species and its application in dye decolorization. Afr. J. Microbiol. Res. 5(11), 1261–1267 (2011)

    Google Scholar 

  43. Galhaup C., Haltrich D.: Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl. Microbiol. Biotechnol. 56, 225–232 (2001)

    Article  Google Scholar 

  44. Shutova V.V., Revin V.V., Makushina Y.A.: The effect of copper ions on the production of laccase by the fungus Lentinus (Panus) tigrinus. Appl. Biochem. Microbiol. 44, 683–687 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eyini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jegatheesan, M., Eyini, M. Response Surface Methodology Mediated Modulation of Laccase Production by Polyporus arcularius . Arab J Sci Eng 40, 1809–1818 (2015). https://doi.org/10.1007/s13369-014-1499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1499-3

Keywords

Navigation