Skip to main content
Log in

Laminar Natural Convection for Thermally Active Partial Side Walls in a Right-Angled Triangular Cavity

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of partial heating and cooling on laminar natural convective heat transfer in right-angle triangular cavity filled with water has been investigated numerically. The triangular cavity is presented in nine different configurations namely Left-Bottom, Left-Middle, Left-Top, Middle-Bottom, Middle-Middle, Middle-Top, Right-Bottom, Right-Middle and Right-Top and the length of the thermally active wall is b = L/3. The base wall is considered as partially hot while the side wall as partially cold. Two-dimensional steady-state continuity, Navier–Stokes and energy equations along with the Boussinesq approximation are solved using the finite volume method. The Rayleigh number is varied from 105 to 107. Results revealed that the heat transfer rate is high for LB walls whereas low for RT location. Also, the heat transfer rate enhancement is observed for all values of Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

g :

Acceleration due to gravity (m s−2)

H :

Height of the cavity (m)

L :

Width of the cavity (m)

b :

Length of the thermally active wall (m)

p :

Pressure (KPa)

P :

Dimensionless pressure

u, v :

Velocity components (ms−1)

U, V :

Dimensionless velocity component

x, y :

Co-ordinates

X, Y :

Dimensionless co-ordinates

T :

Temperature (K)

T h :

Hot wall temperature (K)

T c :

Cold wall temperature (K)

Pr :

Prandtl number

Ra :

Rayleigh number

Nu x :

Local Nusselt number

Nu :

Average Nusselt number

α :

Thermal diffusivity (m2s)

β :

Thermal expansion coefficient (K−1)

θ :

Dimensionless temperature

k :

Thermal conductivity (Wm−1 K−1)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (Ns m−2)

υ :

Kinematic viscosity (m2 s)

ψ :

Stream function (s−1)

Ψ:

Dimensionless stream function

h:

Hot wall

c:

Cold wall

References

  1. Koca A., Oztop H.F., Varol Y.: The effects of prandtl number on natural convection in triangular enclosures with localized heating from below. Int. Commun. Heat Mass Transf. 34, 511–519 (2007)

    Article  Google Scholar 

  2. Nithyadevi N., Kandaswamy P., Lee J.: Natural convection in a rectangular cavity with partially active side walls. Int. J. Heat Mass Transf. 50, 4688–4697 (2007)

    Article  MATH  Google Scholar 

  3. Varol Y., Oztop H.F., Mobedi M., Pop I.: Visualization of natural convection heat transport using heatline method in porous non-isothermally heated triangular cavity. Int. J. Heat Mass Transf. 51, 5040–5051 (2007)

    Article  Google Scholar 

  4. Basak T., Roy S., Balakrishnan A.R.: Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49, 4525–4535 (2006)

    Article  MATH  Google Scholar 

  5. Yesiloz G., Aydin O.: Laminar natural convection in right-angled triangular enclosures heated and cooled on adjacent walls. Int. J. Heat Mass Transf. 60, 365–374 (2013)

    Article  Google Scholar 

  6. Saha S.C.: Unsteady natural convection in a triangular enclosure under isothermal heating. Energy Build. 43, 695–703 (2011)

    Article  Google Scholar 

  7. Alizadeh M.R., Dehghan A.A.: Conjugate natural convection of nanofluids in an enclosure with a volumetric heat source. Arab. J. Sci. Eng. 39, 1195–1207 (2013)

    Article  Google Scholar 

  8. Kefayati GH.R.: Lattice Boltzmann simulation of natural convection in a square cavity with a linearly heated wall using nanofluid. Arab. J. Sci. Eng. 39, 2143–2156 (2013)

    Article  Google Scholar 

  9. Mansour M.A., Mohamed R.A., Abd-Elaziz M.M., Ahmed S.E.: Numerical simulation of mixed convection flows in a square lid-driven cavity partially heated from below using nanofluid, Int. Commun. Heat Mass Transf. 37, 1504–1512 (2010)

    Article  Google Scholar 

  10. Kent E.F.: Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls. Mech. Res. Commun. 36, 497–508 (2009)

    Article  MATH  Google Scholar 

  11. Xu X., Yu Z., Hu Y., Fan L., Cen K.: A numerical study of laminar natural convection heat transfer around a horizontal cylinder inside a concentric air-filled triangular enclosure. Int. J. Heat Mass Transf. 53, 345–355 (2010)

    Article  MATH  Google Scholar 

  12. Bhardwaj S., Dalal A.: Analysis of natural convection heat transfer and entropy generation inside porous right-angled triangular enclosure. Int. J. Heat Mass Transf. 65, 500–513 (2013)

    Article  Google Scholar 

  13. Akinsete V.A., Coleman T.A.: Heat transfer by steady laminar free convection in triangular enclosures. Int. J. Heat Mass Transf. 25(7), 991–998 (1982)

    Article  MATH  Google Scholar 

  14. Rahman M.M., Oztop H.F., Ahsan A., Orfi J.: Natural convection effects on heat and mass transfer in a curvilinear triangular cavity. Int. J. Heat Mass Transf. 55, 6250–6259 (2012)

    Article  Google Scholar 

  15. Basak T., Gunda P., Anandalakshmi R.: Analysis of entropy generation during natural convection in porous right-angled triangular cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55, 4521–4535 (2012)

    Article  Google Scholar 

  16. Asan H., Namli L.: Laminar natural convection in a pitched roof of triangular cross-section: summer day boundary conditions. Energy Build. 33(1), 69–73 (2000)

    Article  Google Scholar 

  17. Kaluri R.S., Anandalakshmi R., Basak T.: Bejan’sheatline analysis of natural convection in right-angled triangular enclosures: effects of aspect-ratio and thermal boundary conditions”. Int. J. Therm. Sci. 49, 1576–1592 (2010)

    Article  Google Scholar 

  18. Tzeng S.C., Liou J.H., Jou R.Y.: Numerical simulation-aided parametric analysis of natural convection in a roof of triangular enclosures. Heat Transf. Eng. 26(8), 69–79 (2005)

    Article  Google Scholar 

  19. Varol Y., Oztop H.F., Yilmaz T.: Natural convection in triangular enclosures with protruding isothermal heater. Int. J. Heat Mass Transf. 50, 2451–2462 (2007)

    Article  MATH  Google Scholar 

  20. Basak T., Aravind G., Roy S.: Visualization of heat flow due to natural convection within triangular cavities using bejan’s heatline concept. Int. J. Heat Mass Transf. 52, 2824–2833 (2009)

    Article  MATH  Google Scholar 

  21. Varol Y., Oztop H.F., Varol A.: Effects of thin fin on natural convection in porous triangular enclosures. Int. J. Therm. Sci. 46, 1033–1045 (2008)

    Article  Google Scholar 

  22. Fluent User’s Guide, Release 6.3.26, Fluent Incorporated (2005-01-06)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Triveni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triveni, M.K., Sen, D. & Panua, R. Laminar Natural Convection for Thermally Active Partial Side Walls in a Right-Angled Triangular Cavity. Arab J Sci Eng 39, 9025–9038 (2014). https://doi.org/10.1007/s13369-014-1418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1418-7

Keywords

Navigation