Skip to main content
Log in

A Nanocomposite Polymer Electrolyte with High-Temperature Stability for Rechargeable Lithium Batteries

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A kind of nanocomposite polymer electrolyte (NCPE) based on poly(vinylidene fluoride-co-hexafluoropropylene) was prepared by a solution casting technology, in which a room temperature ionic liquid, 1-ethyl-3-methyl-imidazolium tetrafluoroborate was used as plasticizer to improve the thermal stability. The obtained NCPE displayed a porous structure composed of many spherical polymer grains and its crystallinity decreased with the amount of SiO2 nanoparticles. Effect of SiO2 nanoparticles on its electrochemical properties was studied by impedance spectroscopy, linear sweep voltammetry and cyclic voltammetry. When the NCPE is filled with 2 % of SiO2 nanoparticles, it has a room temperature ionic conductivity of 4.7 × 10−4 S cm−1, and exhibits a high decomposition temperature up to 289 °C. The Li/LiFePO4 cells using this NCPE as separator show a good rate capability and a satisfied cycling performance. The results confirmed the feasibility of the as-prepared NCPE in rechargeable lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakrabarti M.H., Hajimolana S.A., Mjalli F.S., Saleem M., Mustafa I.: Redox flow battery for energy storage. Arab. J. Sci. Eng. 38(4), 723–739 (2013)

    Article  Google Scholar 

  2. Tarascon J.M.: Is lithium the new gold?. Nat. Chem. 2(6), 680 (2010)

    Article  Google Scholar 

  3. Tarascon J.M., Armand M.: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    Article  Google Scholar 

  4. Bhattacharyya R., Key B., Chen H.L., Best A.S., Hollenkamp A.F., Grey C.P.: In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9(6), 504–510 (2010)

    Google Scholar 

  5. Hassoun J., Scrosati B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49(13), 2371–2374 (2010)

    Article  Google Scholar 

  6. Sunarso J., Shekibi Y., Efthimiadis J., Jin L., Pringle J.M., Hollenkamp A.F., MacFarlane D.R., Forsyth M., Howlett P.C.: Optimising organic ionic plastic crystal electrolyte for all solid-state and higher than ambient temperature lithium batteries. J. Solid State Electrochem. 16(5), 1841–1848 (2012)

    Article  Google Scholar 

  7. Lalia B.S., Yoshimoto N., Egashira M., Morita M.: A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries. J. Power Sources 195(21), 7426–7431 (2010)

    Article  Google Scholar 

  8. Sirisopanaporn C., Fernicola A., Scrosati B.: New, ionic liquid-based membranes for lithium battery application. J. Power Sources 186(2), 490–495 (2009)

    Article  Google Scholar 

  9. Suo L., Hu Y.S., Li H., Armand M., Chen L.: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481–1489 (2013)

    Article  Google Scholar 

  10. Tatsumisago, M.; Nagao, M.; Hayashi, A.: Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian Ceram. Soc. doi:10.1016/j.jascer.2013.03.005 (2013)

  11. Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.P.; Phan, T.N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. doi:10.1038/nmat3602 (2013)

  12. Wen J., Yu Y., Chen C.: A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater. Express 2(3), 197–212 (2012)

    Article  Google Scholar 

  13. Tang C., Hackenberg K., Fu Q., Ajayan P.M., Ardebili H.: High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett. 12(3), 1152–1156 (2012)

    Article  Google Scholar 

  14. Schaefer J.L., Lu Y., Moganty S.S., Agarwal P., Jayaprakash N., Archer L.A.: Electrolytes for high-energy lithium batteries. Appl. Nanosci. 2(2), 91–109 (2012)

    Google Scholar 

  15. Tan G., Wu F., Li L., Liu Y., Chen R.: Magnetron sputtering preparation of nitrogen-incorporated lithium–aluminum–titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries. J. Phys. Chem. C 116(5), 3817–3826 (2012)

    Article  Google Scholar 

  16. Lewandowski A., Świderska-Mocek A.: Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J. Power Sources. 194(2), 601–609 (2009)

    Article  Google Scholar 

  17. Hapiot P., Lagrost C.: Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108(7), 2238–2264 (2008)

    Article  Google Scholar 

  18. Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009)

    Google Scholar 

  19. Li Z.H., Zhang P., Zhang H.P., Wu Y.P., Zhou X.D.: A lotus root-like porous nanocomposite polymer electrolyte. Electrochem. Commun. 10(5), 791–794 (2008)

    Article  Google Scholar 

  20. Rosenberg Y., Siegmann A., Narkis M., Shkolnik S.: The sol/gel contribution to the behavior of γ-irradiated poly (vinylidene fluoride). J. Appl. Polym. Sci. 43(3), 535–541 (1991)

    Article  Google Scholar 

  21. Liu Y., Lee J.Y., Hong L.: In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes. J. Power Sources. 129(2), 303–311 (2004)

    Article  Google Scholar 

  22. He X.M., Shi Q., Zhou X., Wan C.R., Jiang C.Y.: In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim. Acta. 51(6), 1069–1075 (2005)

    Article  Google Scholar 

  23. Zhang J., Han H., Wu S., Xu S., Yang Y., Zhou C., Zhao X.: Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells. Solid State Ionics. 178(29), 1595–1601 (2007)

    Article  Google Scholar 

  24. Wang H.L., Liu X.T., Yu S.M., Shi T.J., Jiang S.T.: Preparation of P(AN-MMA)/SiO2 hybrid solid electrolytes. J. Appl. Polym. Sci. 114(3), 1365–1369 (2009)

    Article  Google Scholar 

  25. Khan S.A., Baker G.L., Colson S.: Composite polymer electrolytes using fumed silica fillers: Rheology and ionic conductivity. Chem. Mater. 6(12), 2359–2363 (1994)

    Article  Google Scholar 

  26. Aravindan V., Vickraman P.: Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler. Mater. Chem. Phys. 115(1), 251–257 (2009)

    Google Scholar 

  27. Li Z.H., Jiang J., Lei G.T., Gao D.S.: Gel polymer electrolyte prepared by in situ polymerization of MMA monomers in room temperature ionic liquid. Polym. Adv. Technol. 17(7–8), 604–607 (2006)

    Article  Google Scholar 

  28. Ratner M.A., Shriver D.F.: Ion transport in solvent-free polymers. Chem. Rev. 88(1), 109–124 (1988)

    Article  Google Scholar 

  29. Singh T.J., Bhat S.V.: Morphology and conductivity studies of a new solid polymer electrolyte: (PEG) x LiClO4. Bull. Mater. Sci. 26(7), 707–714 (2003)

    Article  Google Scholar 

  30. Markevich E., Baranchugov V., Aurbach D.: On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5 V Li ion batteries. Electrochem. Commun. 8(8), 1331–1334 (2006)

    Article  Google Scholar 

  31. Cheruvally G., Kim J.K., Choi J.W., Ahn J.H., Shin Y.J., Manuel J., Raghavan P., Kim K.W., Ahn H.J., Choi D.S.: Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries. J. Power Sources. 172(2), 863–869 (2007)

    Article  Google Scholar 

  32. Raghavan P., Zhao X.H., Manuel J., Chauhan G.S., Ahn J.H., Ryu H.S., Ahn H.J., Kim K.W., Nah C.: Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim. Acta. 55(4), 1347–1354 (2010)

    Article  Google Scholar 

  33. Umebayashi Y., Hamano H., Seki S., Minofar B., Fujii K., Hayamizu K., Tsuzuki S., Kameda Y., Kohara S., Watanabe M.: Liquid structure of and Li+ ion solvation in bis(trifluoromethanesulfonyl)amide based ionic liquids composed of 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium cations. J. Phys. Chem. B. 115(42), 12179–12191 (2011)

    Google Scholar 

  34. Zhou Q., Fitzgerald K., Boyle P.D., Henderson W.A.: Phase behavior and crystalline phases of ionic liquid-lithium salt mixtures with 1-alkyl-3-methylimidazolium salts. Chem. Mater. 22(3), 1203–1208 (2009)

    Article  Google Scholar 

  35. Monteiro M.J., Bazito F.F.C., Siqueira L.J.A., Ribeiro M.C.C., Torresi R.M.: Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid. J. Phys. Chem. B. 112(7), 2102–2109 (2008)

    Google Scholar 

  36. Kim J.K., Cheruvally G., Li X., Ahn J.H., Kim K.W., Ahn H.J.: Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J. Power Sources. 178(2), 815–820 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q.C., Liu, H.Y., Xia, Q.L. et al. A Nanocomposite Polymer Electrolyte with High-Temperature Stability for Rechargeable Lithium Batteries. Arab J Sci Eng 39, 6651–6657 (2014). https://doi.org/10.1007/s13369-014-1180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1180-x

Keywords

Navigation