Skip to main content

Advertisement

Log in

A Novel Space-Vector Current Control Method for Commutation Torque Ripple Reduction of Brushless DC Motor Drive

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a novel space-vector current-control strategy to minimize the torque ripples in brushless DC Motor (BLDC) motor. For BLDC motors, torque ripple, is an important origin of vibration, acoustic noise and speed fluctuation. The current ripple, created due to the stator winding inductance and deviation of back emf, leads to generation of ripple in the torque and prevents the usage of BLDC motor in a precise servo drive system. The paper includes MATLAB/SIMULINK results of conventional, unipolar, bipolar current control algorithms, varying input voltage method and a novel space vector current control method. The comparison of simulation results reveals that the proposed technique is effective in reducing the torque ripple and improves the system performance. The validity and practical applications of the proposed control scheme are verified through the experimental results. The proposed method for torque ripple reduction is validated by reconstructed torque waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLDC:

Brushless DC motor

SVPWM:

Space vector pulse width modulation

SVCCM:

Space vector-based current control method

VIVM:

Variable input voltage method

T s :

Switching time

T 0 :

Switching time duration of zero vector

V 1V 6 :

Active vectors

V 0 and V 7 :

Zero vectors

V ref :

Reference voltage vector

E :

Input DC voltage

\({S_{a}^{+}, S_{a}^{-}, S_{b}^{+}, S_{b}^{-}, S_{c}^{+}\; {\rm and}\; S_{c}^{-}}\) :

Switching variable vector

\({\theta}\) :

Phase angle of reference voltage vector

m :

Modulation index

T 1, T 2 :

Dwelling times

References

  1. Son Y.C., Jang K.Y., Suh B.S.: Integrated MOSFET inverter module of low-power drives systems. IEEE Trans. Ind. Appl. 44, 878–886 (2008)

    Article  Google Scholar 

  2. Sathyan A., Milivojevic N., Lee Y.J., Krishnamurthy M., Emadi A.: An FPGA-based novel digital PWM control scheme for BLDC motor drives. IEEE Trans. Ind. Electron. 56, 3040–3049 (2009)

    Article  Google Scholar 

  3. Pillay P., Krishnan R.: Modeling, simulation, and analysis of permanent-magnet motor drives. II. The brushless DC motor drive. IEEE Trans. Ind. Appl. 25, 274–279 (1989)

    Article  Google Scholar 

  4. Miller T.J.E.: Brushless PM and Reluctance Motor Drives. Clarendon press, Oxford (1989)

    Google Scholar 

  5. Kim I., Nakazawa N., Kim S., Park C., Yu C.: Compensation of torque ripple in high performance BLDC motor drives. Control. Eng. Pract. 18, 1166–1172 (2010)

    Article  Google Scholar 

  6. Hendershot J.R., Miller T.H.E.: Design of Brushless Permanent Magnet Motors. Magna Physics, Oxford (1994)

    Google Scholar 

  7. Le-Huy H., Perret R., Feuillet R.: Minimization of torque ripple in brushless DC motor drives. IEEE Trans. Ind. Electron. 1-22, 748–755 (1986)

    Google Scholar 

  8. Carlson R., Mazenc M., Fagundes J.: Analysis of torque ripple due to phase commutation in brushless DC machines. IEEE Trans. Ind. Electron. 28, 632–638 (1992)

    Google Scholar 

  9. Kang, B.H., Kim, C.J., Choe, G.H.: Analysis of torque ripple in BLDC motor with commutation time. In: ISIE Conference, vol. 32, pp. 1044–1048 (2001)

  10. Park, S., Kim, T., Ahn, S., Hyun, D.: A new current control algorithm for torque ripple reduction of BLDC motors. In: Proceedings of IECON’01, vol. 2, pp. 1521–1526 (2001)

  11. Xiao, X., Li, Y., Zhang, M., Li, M.: A novel control strategy for BLDC motor with low torque ripples. In: Proceedings of IECON’01, pp. 1660–1664 (2001)

  12. Song J., Choy I.: Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor. IEEE Trans. Power Electron. 19, 312–319 (2004)

    Article  Google Scholar 

  13. Bharatkar, S., Yanamashetti, R.: Reduction of commutation torque ripple in permanent magnet motors. In: Proceedings of ECTI-CON, pp. 1–3 (2008)

  14. Nam K.Y., Lee W.T., Lee C.M., Hong J.P.: Reducing torque ripple of brushless DC motor by varying input voltage. IEEE Trans. Magn. 42, 1307–1310 (2006)

    Article  Google Scholar 

  15. Liu, Y., Zhu, Z.Q., Howe, D.: Commutation torque ripple minimization in direct controlled PM brushless DC motors. In: IAS 2006 Conference, pp. 1642–1648 (2006)

  16. Lu H., Zhang L., Qu W.: A new torque control method for torque ripple minimization of bldc motor with un-ideal back EMF. IEEE Trans. Power Electron. 23, 950–958 (2008)

    Article  Google Scholar 

  17. Changliang, X., Wei, Y., Zhiqiang, L.: Toque ripple reduction of PM brushless DC motors based on auto disturbances-rejection controller. In: Proceedings of CSEEE 26, 137–142 (2006)

  18. Kim C.G., Lee J.H.: A commutation torque minimization method for brushless DC motors with trapezoidal electromotive force. ICPE 1, 476–481 (1998)

    Google Scholar 

  19. Pillay P., Krishnan R.: Modeling, simulation and analysis of permanent magnet motor drives, Part II: the brushless DC motor drive. IEEE Trans. Ind. Electron 25, 274–279 (1989)

    Google Scholar 

  20. AVR435: BLDC motor control using a sinus modulated PWM algorithm. ATMEL Application Note.

  21. Qiang, L.: The study of PWM methods in permanent magnet brushless DC motor speed control system. In: ICEMS 2008, pp. 3897–3900 (2008)

  22. Cunshan, Z., Dunxin, B.: A PWM control algorithm for eliminating torque ripple caused by stator magnetic field jump of brushless DC motors. In: WCICA 2008, pp. 6547–6549 (2008)

  23. Sathyan, A.: A low-cost digital control scheme for brushless DC motor drives in domestic applications. In: IEMDC’ 09, pp. 76–82 (2009)

  24. Guangwei, M.: Commutation torque ripple reduction in BLDC motor using PWM ON PWM mode. In: ICEMS 2009, pp. 1–6 (2009)

  25. Murai Y.: Torque ripple improvement for brushless DC miniature motors. IEEE Trans. Ind. Appl. 25, 441–450 (1989)

    Article  Google Scholar 

  26. Shi, T., Guo, Y., Song, P.: A new approach of minimizing commutation torque ripple for brushless DC motor based on DC–DC converter. IEEE Trans. Ind. Appl. 57, 3483–3490 (2010)

    Google Scholar 

  27. Su, G.J., Adams, J.: Multilevel DC link inverter for brushless permanent magnet motors with very low inductance. In: IEEE IAS 2001, vol. 2, pp. 829–834 (2001)

  28. Ashabani, M., Kaviani, A.K., Milimonfared, J.: Minimization of commutation torque ripple in brushless DC motors with optimized input voltage control. In: SPEEDAM 2008, pp. 250–255 (2008)

  29. Niasar, A., Moghbeli, H., Vahedi, A.: Modeling and simulation methods for brushless DC motor drives. In: ICMSAO’05 (2005)

  30. Wu A., Chapman P.L.: Simple expression for optimal current waveforms for permanent-magnet synchronous machine drives. IEEE Trans. Energy Conv. 20, 150–157 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Viswanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viswanathan, V., Jeevananthan, S. A Novel Space-Vector Current Control Method for Commutation Torque Ripple Reduction of Brushless DC Motor Drive. Arab J Sci Eng 38, 2773–2784 (2013). https://doi.org/10.1007/s13369-012-0490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0490-0

Keywords

Navigation