Skip to main content
Log in

Numerical Simulations of Boundary-Forced RLW Equation with Cubic B-Spline-based Differential Quadrature Methods

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the study, differential quadrature methods based on cubic B-splines are proposed. In order to test the accuracy and the efficiency of the present methods, some numerical solutions of the Regularized Long Wave Equation are simulated. Wave generation, traveling solitary wave, interaction of the two solitary waves and undulation solutions of the RLW equation are studied. Obtained simulations are compared with some earlier works. Lowest three conserved quantities are computed for all test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peregrine D.H.: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–330 (1966)

    Article  Google Scholar 

  2. Benjamin T.B., Bona J.L., Mahony J.J.: Model equations for long waves in non-linear dispersive systems. Philos. Trans. Roy. Soc. London A. 272, 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bona J.L., Bryant P.J.: A mathematical model for long waves generated by wavemakers in nonlinear dispersive systems. Proc. Cambridge Philos. Soc. 73, 391–405 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albert J.P., Bona J.L., Henry D.B.: Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Physica 24d, 343–366 (1987)

    MathSciNet  Google Scholar 

  5. Eilbeck J.C., McGuire G.R.: Numerical study of the regularized long wave equation I: numerical methods. J. Comp. Phys. 19, 43–57 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eilbeck J.C., McGuire G.R.: Numerical study of the regularized long wave equation II: interaction of solitary waves. J. Comp. Phys. 23, 63–73 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Abdulloev K.O., Bogolubsky I.L., Markhankov V.G.: One more example of inelastic soliton interaction. Phys. Lett. 56A, 427–428 (1976)

    Google Scholar 

  8. Gardner L.R.T., Gardner G.A., Doğan A.: A least squares finite element scheme for the RLW equation. Commun. Numer. Meth. Eng. 12, 795–804 (1996)

    Article  MATH  Google Scholar 

  9. Gardner L.R.T., Gardner G.A., Ayoub F.A., Amein N.K.: Modelling an undular bore with B-splines. Comput. Meth. Appl. Mech. Eng. 147, 147–152 (1997)

    Article  MATH  Google Scholar 

  10. Dağ İ.: Least squares quadratic B-spline finite element method for the regularized long wave equation. Comput. Meth. Appl. Mech. Eng. 182, 205–215 (2000)

    Article  MATH  Google Scholar 

  11. Doğan A.: Numerical solution of the RLW equation using linear finite elements within Galerkin’s method. Appl. Math. Model. 26, 771–783 (2002)

    Article  MATH  Google Scholar 

  12. Dağ İ, Özer M.N.: Approximation of the RLW equation by the least square cubic B-spline finite element method. Appl. Math. Model. 25, 221–231 (2001)

    Article  MATH  Google Scholar 

  13. Zaki S.I.: Solitary waves of the split RLW equation. Comput. Phys. Commun. 138, 80–91 (2001)

    Article  MATH  Google Scholar 

  14. Saka B., Da ğ., Doğan A.A.: Galerkin method for the numerical solution of the RLW equation using quadratic B-splines. Int. J. Comput. Math. 81, 727–739 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Avilez-Valente P., Seabra-Santos F.J.: A Petrov-Galerkin finite element scheme for the regularized long wave equation. Comput. Mech. 34, 256–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dağ İ, Saka B., Irk D.: Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math. 190, 532–547 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dağ İ, Doğan A., Saka B.: B-spline collocation methods for numerical solutions of RLW equation. Int. J. Comput. Math. 80, 743–757 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saka B., Dağ İ.: A collocation method for the numerical solution of the RLW equation using cubic B-spline basis. Arab. J. Sci. Eng. 30, 39–50 (2005)

    Google Scholar 

  19. Raslan K.R.: A computational method for the regularized long wave (RLW) equation. Appl. Math. Comput. 167(2), 1101–1118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Soliman A.A., Hussien M.H.: Collocation solution for RLW equation with septic spline. Appl. Math. Comput. 161(2), 623–636 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gardner L.R.T., Gardner G.A.: Solitary wave of the regularized long wave equation. J. Comput. Phys. 91, 441–459 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bellman R., Kashef B.G., Casti J.: Differential quadrature: a technique for the rapid solution of nonlinear differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bellman, R.; Kashef, B.G.; Lee, E.S.; Rasudevan, R.: Differential quadrature and splines. Comput. Math. Appl. 371–376 (1976)

  24. Quan J.R., Chang C.T.: New sightings in involving distributed system equations by the quadrature methods-I. Comput. Chem. Eng. 13, 779–788 (1989)

    Article  Google Scholar 

  25. Quan J.R., Chang C.T.: New sightings in involving distributed system equations by the quadrature methods-II. Comput. Chem. Eng. 13, 1017–1024 (1989)

    Article  Google Scholar 

  26. Shu C., Richards B.E.: Application of generalized differential quadrature to solve two dimensional incompressible Navier Stokes equations. Int. J. Numer. Meth. Fluids 15, 791–798 (1992)

    Article  MATH  Google Scholar 

  27. Bonzani I.: Solution of non-linear evolution problems by parallelized collocation–interpolation methods. Comput. Math. Appl. 34(12), 71–79 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheng J., Wang B., Du S.: A theoretical analysis of piezoelectric/composite laminate with larger-amplitude deflection effect, Part II: Hermite differential quadrature method and application. Int. J. Solids Struct. 42(24–25), 6181–6201 (2005)

    Article  MATH  Google Scholar 

  29. Shu C.: Differential Quadrature and its Application in Engineering. Springer, London Limited (2000)

    Book  MATH  Google Scholar 

  30. Shu, C.: Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation, Ph.D. Thesis. s.l.: University of Glasgow, UK (1991)

  31. Zong Z., Lam K.Y.: A localized differential quadrature (LDQ) method and its applications to the 2D wave equation. Comput. Mech. 29, 382–391 (2002)

    Article  MATH  Google Scholar 

  32. Dağ İ, Korkmaz A.: A differential quadrature algorithm for simulations of nonlinear Schrödinger equation. Comput. Math. Appl. 56(9), 12222–2234 (2008)

    Google Scholar 

  33. Saka B., Dağ İ, Dereli Y., Korkmaz A.: Three different methods for numerical solutions of the EW equation. Eng. Anal. Bound. Elem. 32, 556–566 (2008)

    Article  MATH  Google Scholar 

  34. Korkmaz, A.; Dağ, İ: A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dynam. 56(1–2) (2009)

  35. Korkmaz A., Dağ İ.: Crank–Nicolson-differential quadrature algorithms for the Kawahara equation. Chaos Solitons Fractals 42(1), 65–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Korkmaz A., Dağ İ.: Solitary wave simulations of complex modified Korteweg-de Vries equation using differential quadrature method. Comput. Phys. Commun. 180(9), 1516–1523 (2009)

    Article  Google Scholar 

  37. Tomasiello, S.: Numerical solutions of the Burger-Huxley equation by the IDQ method. Int. J. Comput. Math. (2008). doi:10.1080/00207160801968672

  38. Malekzadeh P., Karami G.: Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates. Eng. Struct. 27, 1563–1574 (2005)

    Article  Google Scholar 

  39. Li C., Wu X.: A new linearized method for Benjamin-Bona-Mahony equation. Numer. Meth. Partial Differ. Equ. 20, 948–961 (2004)

    Article  MATH  Google Scholar 

  40. Korkmaz A., Dağ İ, Saka B.: Cosine expansion based differential quadrature (CDQ) algorithms for numerical solution of the RLW equation. Numer. Meth. Partial Differ. Equ. 26(3), 544–560 (2010)

    MATH  Google Scholar 

  41. Guo Q., Zhong H.: Non-linear vibration analysis of beams by a spline-based differential quadrature method. J. Sound Vib. 269, 413–420 (2004)

    Article  MATH  Google Scholar 

  42. Zhong H.: Spline-based differential quadrature for fourth order differential equations and its application to Kirchhoff plates. Appl. Math. Modell. 28, 353–366 (2004)

    Article  MATH  Google Scholar 

  43. Zhong H., Lan M.: Solution of nonlinear initial-value problems by the spline-based differential quadrature method. J. Sound Vib. 296, 908–918 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Olver P.J.: Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc. 85, 143–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dağ İ., Saka B., Irk D.: Application of cubic B-splines for numerical solution of the RLW equation. Appl. Math. Comput. 159(2), 373–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Bhardwaj D., Shankar R.: A computational method for regularized long wave equation. Comput. Math. Appl. 40, 1397–1404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Esen A., Kutluay S.: Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174, 833–845 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Korkmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkmaz, A., Dağ, İ. Numerical Simulations of Boundary-Forced RLW Equation with Cubic B-Spline-based Differential Quadrature Methods. Arab J Sci Eng 38, 1151–1160 (2013). https://doi.org/10.1007/s13369-012-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0353-8

Keywords

Navigation