Skip to main content
Log in

Combinatorial simpliciality of arrangements of hyperplanes

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

We introduce a combinatorial characterization of simpliciality for arrangements of hyperplanes. We then give a sharp upper bound for the number of hyperplanes of such an arrangement in the projective plane over a finite field, and present some series of arrangements related to the known arrangements in characteristic zero. We further enumerate simplicial arrangements with given symmetry groups. Finally, we determine all finite complex reflection groups affording combinatorially simplicial arrangements. It turns out that combinatorial simpliciality coincides with inductive freeness for finite complex reflection groups except for the Shephard–Todd group \(G_{31}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Minimal fields of definition were computed in Cuntz (2011) for all known simplicial arrangements. Most of the occurring fields are of the form \(\mathbb {Q}(\zeta )\cap \mathbb {R}\) for \(\zeta \) a root of unity.

  2. We use the word “incidence” instead of “matroid” in dimension three because we are then only interested in the relation between (projective) points and lines.

  3. In \(K^3\) this is equivalent to the fact that all hyperplanes except one meet in one one-dimensional intersection point; see Orlik and Terao (1992), Definition 2.15].

References

  • Athanasiadis, C.A.: Characteristic polynomials of subspace arrangements and finite fields. Adv. Math. 122(2), 193–233 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Barakat, M., Cuntz, M.: Coxeter and crystallographic arrangements are inductively free. Adv. Math. 229(1), 691–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Cuntz, M.: Crystallographic arrangements: Weyl groupoids and simplicial arrangements. Bull. London Math. Soc. 43(4), 734–744 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Cuntz, M.: Minimal fields of definition for simplicial arrangements in the real projective plane. Innov. Incid. Geom. 12, 49–60 (2011)

    MathSciNet  MATH  Google Scholar 

  • Cuntz, M.: Simplicial arrangements with up to 27 lines. Discrete Comput. Geom. 48(3), 682–701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Cuntz, M., Heckenberger, I.: Finite Weyl groupoids. J. Reine Angew. Math. (2010), p. 35., available at arXiv:1008.5291v1

  • Cuntz, M., Hoge, T.: Free but not recursively free arrangement. Proc. Am. Math. Soc. p. 7, available at arXiv:1302.4055 (2013)

  • Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Grünbaum, B.: Arrangements of hyperplanes, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971) (Baton Rouge, La.), Louisiana State Univ., pp. 41–106 (1971)

  • Grünbaum, B.: A catalogue of simplicial arrangements in the real projective plane. Ars Math. Contemp. 2(1), 25 (2009)

    Google Scholar 

  • Grünbaum, B.: Simplicial arrangements revisited, preprint, p. 10 (2013)

  • Hoge, T., Röhrle, G.: On inductively free reflection arrangements. J. Reine Angew. Math., p. 16, available at arXiv:1208.3131 (2012)

  • Karpilovsky, G.: The Schur multiplier. In: London Mathematical Society Monographs. New Series, vol. 2, The Clarendon Press, Oxford University Press, New York (1987)

  • Melchior, E.: Über Vielseite der projektiven Ebene. Deutsche Math. 5, 461–475 (1941)

    MathSciNet  Google Scholar 

  • Orlik, P., Terao, H.: Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300. Springer, Berlin (1992)

  • Stanley, R.P.: An introduction to hyperplane arrangements. Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, pp. 389–496. MR: 2383131 (2007)

  • Steinberg, R.: The representations of GL(3, q), GL(4, q), PGL(3, q), and PGL(4, q). Can. J. Math. 3, 225–235 (1951)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank U. Dempwolff and G. Malle for many valuable comments. The definition of combinatorial simpliciality in dimension greater than three was suggested by M. Falk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cuntz.

Appendix A: Some simplicial arrangements over \(\mathbb {C}\)

Appendix A: Some simplicial arrangements over \(\mathbb {C}\)

We reproduce here the newly found simplicial arrangements over \(\mathbb {C}\) in the most compact notation, namely as sets of normal vectors in the original finite field. The ordering is the same as in 5.2. The symbol \(\omega \) stands for a primitive element of the corresponding field. As in 5.2, we omit those incidences which come from real simplicial arrangements, from finite complex reflection groups, or which are near pencil.

\(q=5\), \(\,\, \{(0,1,1)\), \((1,0,0)\), \((1,0,1)\), \((1,0,2)\), \((1,1,0)\), \((1,2,1)\), \((1,3,2)\), \((1,4,0)\), \((1,4,1)\), \((1,4,2)\), \((1,4,3)\), \((1,4,4)\}\),

\(q=7\), \(\,\, \{(0,1,0)\), \((0,1,2)\), \((0,1,3)\), \((0,1,4)\), \((1,0,0)\), \((1,0,1)\), \((1,1,3)\), \((1,2,0)\), \((1,2,2)\), \((1,3,0)\), \((1,4,1)\), \((1,5,1)\), \((1,6,3)\), \((1,6,5)\}\),

\(q=7\), \(\,\, \{(0,1,0)\), \((0,1,2)\), \((0,1,3)\), \((0,1,4)\), \((1,0,0)\), \((1,0,1)\), \((1,0,5)\), \((1,1,3)\), \((1,2,0)\), \((1,2,2)\), \((1,3,0)\), \((1,4,1)\), \((1,5,1)\), \((1,6,3)\), \((1,6,5)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((1,0,0)\), \((1,0,5)\), \((1,0,6)\), \((1,1,0)\), \((1,1,2)\), \((1,1,6)\), \((1,2,0)\), \((1,2,2)\), \((1,2,6)\), \((1,3,0)\), \((1,3,5)\), \((1,5,1)\), \((1,5,3)\), \((1,5,4)\}\),

\(q=7\), \(\,\, \{(0,1,2)\), \((1,0,0)\), \((1,0,2)\), \((1,1,4)\), \((1,1,5)\), \((1,1,6)\), \((1,2,3)\), \((1,3,0)\), \((1,3,2)\), \((1,3,4)\), \((1,4,0)\), \((1,4,1)\), \((1,4,4)\), \((1,5,6)\), \((1,6,6)\}\),

\(q = 9\), \(\,\, \{(0,0,1)\), \((1,0,0)\), \((1,0,\omega ^2)\), \((1,0,2)\), \((1,1,2)\), \((1,\omega ^3,2)\), \((1,\omega ^3,\omega ^6)\), \((1,2,\omega ^3)\), \((1,2,\omega ^5)\), \((1,\omega ^5,0)\), \((1,\omega ^5,1)\), \((1,\omega ^5,2)\), \((1,\omega ^6,0)\),

\((1,\omega ^6,\omega ^5)\), \((1,\omega ^6,\omega ^7)\}\),

\(q=7\), \(\,\, \{(0,1,2)\), \((1,0,0)\), \((1,1,4)\), \((1,1,5)\), \((1,1,6)\), \((1,2,2)\), \((1,2,3)\), \((1,3,0)\), \((1,3,4)\), \((1,4,0)\), \((1,4,1)\), \((1,4,4)\), \((1,5,6)\), \((1,6,2)\), \((1,6,6)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,2)\), \((1,0,1)\), \((1,2,0)\), \((1,2,2)\), \((1,2,6)\), \((1,3,0)\), \((1,4,0)\), \((1,4,1)\), \((1,4,2)\), \((1,5,0)\), \((1,5,2)\), \((1,5,3)\), \((1,6,2)\), \((1,6,4)\), \((1,6,5)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,2)\), \((1,0,0)\), \((1,0,1)\), \((1,2,0)\), \((1,2,2)\), \((1,2,6)\), \((1,3,0)\), \((1,4,0)\), \((1,4,1)\), \((1,4,2)\), \((1,5,0)\), \((1,5,2)\), \((1,5,3)\), \((1,6,2)\), \((1,6,4)\), \((1,6,5)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,2)\), \((1,0,0)\), \((1,0,1)\), \((1,0,2)\), \((1,1,4)\), \((1,1,6)\), \((1,2,2)\), \((1,2,6)\), \((1,3,0)\), \((1,3,2)\), \((1,3,4)\), \((1,4,0)\), \((1,4,1)\), \((1,5,6)\), \((1,6,2)\), \((1,6,4)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,0)\), \((0,1,3)\), \((0,1,4)\), \((1,0,0)\), \((1,0,1)\), \((1,0,2)\), \((1,1,0)\), \((1,1,1)\), \((1,1,3)\), \((1,2,0)\), \((1,2,4)\), \((1,2,5)\), \((1,3,0)\), \((1,4,1)\), \((1,4,5)\), \((1,4,6)\), \((1,6,5)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,0)\), \((1,0,0)\), \((1,0,2)\), \((1,0,5)\), \((1,0,6)\), \((1,1,0)\), \((1,1,2)\), \((1,1,6)\), \((1,2,0)\), \((1,2,2)\), \((1,2,6)\), \((1,3,0)\), \((1,3,5)\), \((1,4,5)\), \((1,5,1)\), \((1,5,3)\), \((1,5,4)\}\),

\(q = 9\), \(\,\, \{(0,0,1)\), \((1,0,0)\), \((1,0,\omega )\), \((1,0,\omega ^2)\), \((1,0,2)\), \((1,1,2)\), \((1,1,\omega ^7)\), \((1,\omega ^3,2)\), \((1,\omega ^3,\omega ^6)\), \((1,2,\omega ^3)\), \((1,2,\omega ^5)\), \((1,\omega ^5,0)\), \((1,\omega ^5,1)\), \((1,\omega ^5,2)\),

\((1,\omega ^6,0)\),

\((1,\omega ^6,2)\), \((1,\omega ^6,\omega ^5)\), \((1,\omega ^6,\omega ^7)\}\),

\(q=7\), \(\,\, \{(0,1,0)\), \((0,1,1)\), \((0,1,3)\), \((1,0,3)\), \((1,0,5)\), \((1,0,6)\), \((1,1,1)\), \((1,1,5)\), \((1,3,3)\), \((1,3,6)\), \((1,4,5)\), \((1,4,6)\), \((1,5,0)\), \((1,5,2)\), \((1,5,3)\), \((1,6,1)\), \((1,6,2)\), \((1,6,4)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,1)\), \((0,1,2)\), \((1,0,1)\), \((1,0,2)\), \((1,1,1)\), \((1,1,4)\), \((1,1,6)\), \((1,2,6)\), \((1,3,0)\), \((1,3,2)\), \((1,3,4)\), \((1,4,0)\), \((1,4,1)\), \((1,4,6)\), \((1,5,4)\), \((1,5,6)\), \((1,6,4)\}\),

\(q = 9\), \(\,\, \{(0,0,1)\), \((1,0,0)\), \((1,0,\omega ^2)\), \((1,0,2)\), \((1,1,2)\), \((1,1,\omega ^6)\), \((1,\omega ^3,2)\), \((1,\omega ^3,\omega ^6)\), \((1,\omega ^3,\omega ^7)\), \((1,2,\omega ^3)\), \((1,2,\omega ^5)\), \((1,2,\omega ^6)\), \((1,\omega ^5,0)\), \((1,\omega ^5,1)\),

\((1,\omega ^5,2)\), \((1,\omega ^6,0)\), \((1,\omega ^6,\omega ^5)\), \((1,\omega ^6,\omega ^7)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,0)\), \((0,1,3)\), \((0,1,4)\), \((1,0,0)\), \((1,0,1)\), \((1,0,2)\), \((1,0,5)\), \((1,1,0)\), \((1,1,1)\), \((1,1,3)\), \((1,2,0)\), \((1,2,4)\), \((1,2,5)\), \((1,3,0)\), \((1,4,1)\), \((1,4,5)\), \((1,4,6)\), \((1,6,5)\}\),

\(q = 9\), \(\,\, \{(0,1,1)\), \((1,0,\omega )\), \((1,1,0)\), \((1,1,\omega ^2)\), \((1,1,\omega ^7)\), \((1,\omega ,1)\), \((1,\omega ,\omega ^7)\), \((1,\omega ^2,\omega ^6)\), \((1,\omega ^3,\omega )\), \((1,\omega ^3,\omega ^3)\), \((1,2,\omega ^3)\), \((1,2,\omega ^7)\), \((1,\omega ^5,1)\), \((1,\omega ^6,\omega ^7)\), \((1,\omega ^7,0)\), \((1,\omega ^7,2)\), \((1,\omega ^7,\omega ^5)\), \((1,\omega ^7,\omega ^6)\), \((1,\omega ^7,\omega ^7)\}\),

\(q = 9\), \(\,\, \{(0,1,\omega ^5)\), \((1,0,0)\), \((1,0,\omega )\), \((1,0,\omega ^2)\), \((1,0,2)\), \((1,1,0)\), \((1,1,1)\), \((1,1,2)\), \((1,1,\omega ^5)\), \((1,1,\omega ^7)\), \((1,\omega ,\omega ^7)\), \((1,\omega ^2,\omega ^5)\), \((1,\omega ^5,1)\), \((1,\omega ^5,2)\), \((1,\omega ^6,0)\),

\((1,\omega ^6,2)\), \((1,\omega ^6,\omega ^5)\), \((1,\omega ^6,\omega ^7)\), \((1,\omega ^7,\omega ^3)\}\),

\(q = 9\), \(\,\, \{(0,1,1)\), \((1,0,\omega )\), \((1,1,0)\), \((1,1,\omega ^2)\), \((1,1,\omega ^7)\), \((1,\omega ,1)\), \((1,\omega ,\omega ^7)\), \((1,\omega ^3,\omega )\), \((1,\omega ^3,\omega ^3)\), \((1,\omega ^3,\omega ^6)\), \((1,2,\omega ^3)\), \((1,2,\omega ^6)\), \((1,2,\omega ^7)\), \((1,\omega ^5,1)\), \((1,\omega ^6,\omega ^7)\), \((1,\omega ^7,0)\), \((1,\omega ^7,2)\), \((1,\omega ^7,\omega ^5)\), \((1,\omega ^7,\omega ^7)\}\),

\(q=7\), \(\,\, \{(0,0,1)\), \((0,1,2)\), \((1,0,1)\), \((1,0,4)\), \((1,0,6)\), \((1,1,3)\), \((1,2,0)\), \((1,2,2)\), \((1,2,6)\), \((1,3,0)\), \((1,4,0)\), \((1,4,1)\), \((1,4,2)\), \((1,4,5)\), \((1,5,0)\), \((1,5,2)\), \((1,5,3)\), \((1,6,2)\), \((1,6,4)\), \((1,6,5)\}\),

\(q=13\), \(\,\, \{(0,1,10)\), \((1,0,0)\), \((1,0,3)\), \((1,0,4)\), \((1,1,2)\), \((1,2,8)\), \((1,3,0)\), \((1,4,2)\), \((1,4,7)\), \((1,4,9)\), \((1,5,8)\), \((1,6,0)\), \((1,8,1)\), \((1,9,2)\), \((1,9,5)\), \((1,9,9)\), \((1,9,11)\), \((1,10,1)\), \((1,10,5)\), \((1,10,9)\), \((1,11,1)\}\),

\(q = 9\), \(\,\, \{(0,0,1)\), \((0,1,1)\), \((0,1,\omega )\), \((0,1,\omega ^3)\), \((0,1,2)\), \((0,1,\omega ^6)\), \((1,1,0)\), \((1,1,\omega ^7)\), \((1,\omega ,0)\), \((1,\omega ,1)\), \((1,\omega ^2,0)\), \((1,\omega ^2,\omega )\), \((1,\omega ^3,0)\), \((1,\omega ^3,\omega ^2)\), \((1,2,0)\), \((1,2,\omega ^3)\), \((1,\omega ^5,0)\), \((1,\omega ^5,2)\), \((1,\omega ^6,0)\), \((1,\omega ^6,\omega ^5)\), \((1,\omega ^7,0)\), \((1,\omega ^7,\omega ^6)\}\),

\(q = 9\), \(\,\, \{(0,1,1)\), \((0,1,\omega )\), \((0,1,\omega ^3)\), \((0,1,2)\), \((0,1,\omega ^5)\), \((0,1,\omega ^7)\), \((1,1,\omega ^2)\), \((1,1,\omega ^6)\), \((1,\omega ,\omega ^3)\), \((1,\omega ,\omega ^7)\), \((1,\omega ^2,1)\), \((1,\omega ^2,2)\), \((1,\omega ^3,\omega )\), \((1,\omega ^3,\omega ^5)\),

\((1,2,\omega ^2)\), \((1,2,\omega ^6)\), \((1,\omega ^5,\omega ^3)\), \((1,\omega ^5,\omega ^7)\), \((1,\omega ^6,1)\), \((1,\omega ^6,2)\), \((1,\omega ^7,\omega )\), \((1,\omega ^7,\omega ^5)\}\),

\(q = 9\), \(\,\, \{(0,0,1)\), \((0,1,0)\), \((0,1,1)\), \((0,1,\omega )\), \((0,1,2)\), \((0,1,\omega ^7)\), \((1,1,\omega ^2)\), \((1,1,\omega ^6)\), \((1,\omega ,\omega ^3)\), \((1,\omega ,\omega ^7)\), \((1,\omega ^2,1)\), \((1,\omega ^2,2)\), \((1,\omega ^3,\omega )\), \((1,\omega ^3,\omega ^5)\),

\((1,2,\omega ^2)\), \((1,2,\omega ^6)\), \((1,\omega ^5,\omega ^3)\), \((1,\omega ^5,\omega ^7)\), \((1,\omega ^6,1)\), \((1,\omega ^6,2)\), \((1,\omega ^7,\omega )\), \((1,\omega ^7,\omega ^5)\}\),

\(q = 9\), \(\,\, \{(0,0,1)\), \((0,1,0)\), \((0,1,\omega ^2)\), \((0,1,2)\), \((0,1,\omega ^6)\), \((1,0,0)\), \((1,1,\omega ^3)\), \((1,1,\omega ^7)\), \((1,\omega ,\omega ^2)\), \((1,\omega ,\omega ^6)\), \((1,\omega ^2,\omega )\), \((1,\omega ^2,\omega ^5)\), \((1,\omega ^3,1)\), \((1,\omega ^3,2)\),

\((1,2,\omega ^3)\), \((1,2,\omega ^7)\), \((1,\omega ^5,\omega ^2)\), \((1,\omega ^5,\omega ^6)\), \((1,\omega ^6,\omega )\), \((1,\omega ^6,\omega ^5)\), \((1,\omega ^7,1)\), \((1,\omega ^7,2)\}\),

\(q=11\), \(\,\, \{(0,1,3)\), \((0,1,7)\), \((1,0,4)\), \((1,0,6)\), \((1,1,4)\), \((1,1,6)\), \((1,1,9)\), \((1,1,10)\), \((1,2,4)\), \((1,2,6)\), \((1,2,8)\), \((1,3,4)\), \((1,3,10)\), \((1,4,0)\), \((1,4,4)\), \((1,4,10)\), \((1,5,6)\), \((1,6,2)\), \((1,6,3)\), \((1,6,5)\), \((1,7,10)\), \((1,8,4)\), \((1,9,0)\), \((1,9,1)\), \((1,10,7)\}\),

\(q=13\), \(\,\, \{(0,1,9)\), \((1,0,4)\), \((1,1,10)\), \((1,1,11)\), \((1,1,12)\), \((1,2,7)\), \((1,2,8)\), \((1,2,11)\), \((1,3,7)\), \((1,4,7)\), \((1,5,5)\), \((1,6,0)\), \((1,6,6)\), \((1,6,8)\), \((1,7,6)\), \((1,7,8)\), \((1,7,10)\), \((1,8,5)\), \((1,9,4)\), \((1,9,9)\), \((1,9,12)\), \((1,10,5)\), \((1,10,11)\), \((1,10,12)\), \((1,11,0)\), \((1,11,3)\), \((1,11,10)\), \((1,12,0)\), \((1,12,3)\), \((1,12,6)\}\),

\(q=13\), \(\,\, \{(0,1,7)\), \((1,0,4)\), \((1,0,6)\), \((1,0,9)\), \((1,1,2)\), \((1,2,5)\), \((1,2,8)\), \((1,3,8)\), \((1,4,3)\), \((1,4,7)\), \((1,4,10)\), \((1,5,3)\), \((1,6,0)\), \((1,6,5)\), \((1,7,7)\), \((1,7,10)\), \((1,7,12)\), \((1,8,12)\), \((1,9,0)\), \((1,9,4)\), \((1,9,6)\), \((1,9,9)\), \((1,9,11)\), \((1,9,12)\), \((1,10,0)\), \((1,10,5)\), \((1,10,10)\), \((1,11,1)\), \((1,12,6)\), \((1,12,8)\), \((1,12,9)\}\),

\(q=29\), \(\,\, \{(0,1,6)\), \((0,1,23)\), \((1,0,0)\), \((1,0,1)\), \((1,0,2)\), \((1,1,0)\), \((1,1,1)\), \((1,1,22)\), \((1,2,0)\), \((1,2,23)\), \((1,2,26)\), \((1,3,22)\), \((1,3,23)\), \((1,3,26)\), \((1,4,15)\), \((1,5,6)\), \((1,5,7)\), \((1,5,21)\), \((1,6,21)\), \((1,7,12)\), \((1,7,13)\), \((1,7,19)\), \((1,8,5)\), \((1,10,9)\), \((1,10,12)\), \((1,10,15)\), \((1,11,0)\), \((1,11,2)\), \((1,11,12)\), \((1,12,1)\), \((1,13,2)\),

\((1,13,4)\), \((1,13,10)\), \((1,13,27)\), \((1,15,15)\), \((1,16,8)\), \((1,17,23)\), \((1,19,28)\), \((1,20,16)\), \((1,22,11)\), \((1,25,20)\), \((1,25,22)\), \((1,25,24)\), \((1,26,3)\), \((1,26,21)\}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuntz, M., Geis, D. Combinatorial simpliciality of arrangements of hyperplanes. Beitr Algebra Geom 56, 439–458 (2015). https://doi.org/10.1007/s13366-014-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-014-0190-x

Keywords

Mathematics Subject Classification

Navigation