Skip to main content

Advertisement

Log in

Analysis of the contribution of landscape attributes on the genetic diversity of Artibeus jamaicensis Leach, 1821

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

It is commonly assumed that bats, due to their flight capacity, are not affected by landscape attributes across small geographic extensions. However, recent studies with phyllostomids have found evidence of negative responses, such as decreasing genetic diversity with decreasing forest amount, specifically in areas dominated by agricultural land. The purpose of this study was to evaluate if landscape composition and configuration could be influencing the genetic diversity of a common frugivorous bat: Artibeus jamaicensis. We worked in an area characterized by the presence of extensive agricultural land, with a trend towards open spaces of high contrast with forests. Through mtDNA control region sequences, we inferred high levels of genetic diversity in the surveyed landscapes. In order to determine a possible relationship between genetic diversity and landscape attributes, we employed a multivariate exploratory analysis that allowed us to determine the independent contribution of each variable, in a hierarchical model. We found a negative relationship between genetic diversity and total forest edge, which is a variable that reflects the degree of fragmentation. This procedure can be implemented in population genetics, allowing the incorporation of spatially explicit variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Museum of Natural History [AMNH] (2018) Wing Punch and Hair Sampling Protocols. Available from: http://research.amnh.org/vz/mammalogy/donating-bat-tissue-and-hair-samples-genomic-and-stable-isotope-studies/wing-punch-and-hair-sampling

  • Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Anthony ELP (1988) Age determination in bats: In: Kunz TH (ed). Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington, DC, pp 47–58

    Google Scholar 

  • Arroyo-Rodríguez V, Rojas C, Saldaña-Vásquez RA, Stoner KE (2016) Landscape composition is more important than landscape configuration for phyllostomid bat assemblages in a fragmented biodiversity hotspot. Biol Conserv 198:84–92

    Article  Google Scholar 

  • Ávila-Cabadilla LD, Sánchez-Azofeifa GA, Stoner KE, Álvarez-Añorve MY, Quesada M, Portillo-Quintero CA (2012) Local and landscape factors determining occurrence of Phyllostomid bats in tropical secondary forests. PLoS One 7(4):e35228

    Article  PubMed  PubMed Central  Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326

    Article  PubMed  Google Scholar 

  • Balkenhol N, Cushman SA, Storfer A, Waits LP (2016) Introduction to landscape genetics-concepts, methods, applications. In: Balkenhol N, Chushman SA, Storfer AT, Waits LP (eds) Landscape genetics: concepts, methods, applications. Wiley Blackwell, UK, pp 1–7

    Google Scholar 

  • Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, New York, pp 88–104

    Chapter  Google Scholar 

  • Bernard E, Fenton MB (2003) Bat mobility and roosts in a fragmented landscape in Central Amazonia, Brazil. Biotropica 35(2):262–277

    Google Scholar 

  • Bolívar-Cimé B, Laborde J, MacSwiney MC, Muñoz-Robles C, Tun-Garrido J (2013) Response of phytophagous bats to patch quality and landscape attributes in fragmented tropical semi-deciduous forest. Acta Chiropterol 15(2):399–409

    Article  Google Scholar 

  • Bolton PE, West AJ, Cardilini APA, Clark JA, Maute KL, Legge S, Brazill-Boast J, Griffith SC, Rollins LA (2016) Three molecular markers show no evidence of population genetic structure in the Gouldian finch (Erythrura gouldiae). PLoS One 11(12):e0167723

  • Burland TM, Worthington-Wilmer J (2001) Seeing in the dark: molecular approaches to the study of bat populations. Biol Rev 76:389–409

    Article  CAS  PubMed  Google Scholar 

  • Carstens BC, Sullivan J, Davalos LM, Larsern PA, Pedersen SC (2004) Exploring population genetic structure in three species of Lesser Antillean bats. Mol Ecol 13:2557–2566

    Article  CAS  PubMed  Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45(2):90–96

    Google Scholar 

  • Comisión Nacional de Áreas Naturales Protegidas [CONANP] (2007) Programa de conservación y manejo del Parque Nacional Lagunas de Montebello. SEMARNAT, Mexico City

    Google Scholar 

  • Corthals A, Martin A, Warsi OM, Woller-Skar M, Lancaster W, Russell A, Dávalos LA (2015) From the field to the lab: best practices for field preservation of bat specimens for molecular analysis. PLoS One 10(3):e0118994

    Article  PubMed  PubMed Central  Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Indic 8:691–703

    Article  Google Scholar 

  • Davy CM, Martínez-Núñez F, Willis CKR, Good SV (2015) Spatial genetic structure among bat hibernacula along the leading edge of a rapidly spreading pathogen. Conserv Genet 16(5):1013–1024

    Article  Google Scholar 

  • De la Peña-Cuéllar E, Benítez-Malvido J, Ávila-Cabadilla LD, Martínez-Ramos M, Estrada A (2014) Structure and diversity of phyllostomid bats assemblages on riparian corridors in a human-dominated tropical landscape. Ecol Evol 5(4):903–913

    Article  Google Scholar 

  • Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Lemes-Landeiro V, Telles MP, Rangel TF, Bini LM (2013) Mantel test in population genetics. Genetics Mol Biol 36(4):475–485

    Article  Google Scholar 

  • Diniz-Filho JAF, Telles MP, Bonatto SL, Eizirik E, de Freitas TRO, de Marco P, Santos FR, Sole-Cava A, Nascimiento-Soares T (2008) Mapping the evolutionary twilight zone: molecular markers, populations and geography. J Biogeogr 35:753–763

    Article  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of population. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Eastman JR (2012) IDRISI selva tutorial: manual versión 17. Clark Labs, Clark University

  • Ethier K, Fahrig L (2011) Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landsc Ecol 26:865–876

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrig L (1999) Forest lost and fragmentation: which has the greater effect on persistence of forest-dwelling animals. In: Rochelle JA, Lehman LA, Wisniewski J (eds) Forest fragmentation: wildlife and management implication. Brill Press, Netherlands, pp 87–95

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fleming TH, Murray KL (2009) Population and genetic consequences of hurricanes for three species of West Indian phyllostomid bats. Biotropica 42(2):250–256

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Genetic diversity. Introduction to conservation genetics. Cambridge University Press, New York, pp 45–71

    Google Scholar 

  • García-García JL, Santos-Moreno A (2014) Efectos de la estructura del paisaje y de la vegetación en la diversidad de murciélagos filostómidos (Chiroptera: Phyllostomidae) de Oaxaca, México. Rev Biol Trop 62(1):217–239

    Article  PubMed  Google Scholar 

  • Gonçalves da Silva A, Gaona O, Medellín RA (2008) Diet and trophic structure in a community of fruit-eating bats in Lacandon forest, Mexico. J Mammal 89(1):43–49

    Article  Google Scholar 

  • Handley CO, Gardner AL, Wilson DE (1991) Movements. In: Handley CO, Wilson DE, Gardner AL (eds) Demography and natural history of the common fruit bat, Artibeus jamaicensis, on Barro Colorado Island, Panama. Smithsonian Institution Press, Washington, DC, pp 89–130

    Google Scholar 

  • Heim O, Treitler JT, Tschapka M, Knörnschild M, Jung K (2015) The importance of landscape elements for bat activity and species richness in agricultural areas. PLoS One 10:e0134443

    Article  PubMed  PubMed Central  Google Scholar 

  • Höglund J (2009) Evolutionary conservation genetics. Oxford University Press, USA, pp 60–80

    Book  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968

    Article  Google Scholar 

  • Kraker-Castañeda C, Santos-Moreno A, Lorenzo C, Horváth A, MacSwiney MC, Navarrete-Gutiérrez D (2017) Responses of phyllostomid bats to forest cover in upland landscapes in Chiapas, southeast Mexico. Stud Neotropical Fauna Environ 52(2):112–121

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 Available from: http://www.clustal.org/clustal2/

    Article  CAS  PubMed  Google Scholar 

  • Larsen PA, Hoofer SR, Bozeman MC, Pedersen SC, Genoways HH, Carleton JP, Pumo DE, Baker RJ (2007) Phylogenetics and phylogeography of the Artibeus jamaicensis complex based on cytochrome-b DNA sequences. J Mammal 88(3):712–727

    Article  Google Scholar 

  • Laurance WF (2014) Contemporary drivers of habitat fragmentation. In: Kettle CJ, Pin Koh L (eds). CAB International, p 20–27

  • Librado P, Rozas J (2009) DnaSP v.5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452 Available from: www.ub.edu./dnasp/index_v5.html

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press, Washington DC, pp 15–25

    Google Scholar 

  • Llaven-Macías V, Ruiz-Montoya L, García-Bautista M, Lesher-Gordillo J, Machkour M’Rabet S (2017) Genetic diversity and structure of Artibeus jamaicensis (Chiroptera: Phyllostomidae) in Chiapas, Mexico. Acta Zool Mex 33(1):55–66

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between -and reconciliation of- ‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671

    Article  Google Scholar 

  • Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trend Ecol Evol 18(4):189–197

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220

  • Martínez-Sánchez J (2005) Frugívoros voladores y la dispersión de semillas en el Parque Nacional Lagunas de Montebello, Chiapas, México. (Master’s thesis). El Colegio de la Frontera Sur (ECOSUR)

  • McCulloch ES, Tello SJ, Whitehead A, Rolón-Mendoza CMJ, Maldonado-Rodríguez MCD, Stevens RD (2013) Fragmentation of Atlantic Forest has not affected gene flow of a widespread seed-dispersing bat. Mol Ecol 22:4619–4633

    Article  PubMed  Google Scholar 

  • McGarigal K (2015) Fragstats help. Fragstats 4.2: Spatial pattern analysis program for categorical and continuous maps. University of Massachusetts

  • McGarigal K, Ene E (2013) Fragstats 4.2 v4.2.1.603: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, Amherst Available from: http://www.umass.edu/landeco/research/fragstats/fragstats.html

    Google Scholar 

  • McGarigal K, Marks BJ (1995) Fragstats. Spatial pattern analysis program for quantifying landscape structure. Version 2.0. USDA Forest Service General Technical Report

  • Meyer CFJ, Kalko EKV, Kerth G (2009) Small-scale fragmentation effects on local genetic diversity in two phyllostomid bats with different dispersal abilities in Panama. Biotropica 41(1):95–102

    Article  Google Scholar 

  • Meyer CFJ, Struebig MJ, Willig MR (2016) Responses of tropical bats to habitat fragmentation, logging, and deforestation. In: Voigt CC, Kingston T (eds) Bats in the Anthropocene: conservation of bats in a changing world. Springer International Publishing, Switzerland, pp 63–103

    Chapter  Google Scholar 

  • Morrison DW (1978a) Foraging ecology and energetics of the frugivorous bat Artibeus jamaicensis. Ecology 59(4):716–723

    Article  Google Scholar 

  • Morrison DW (1978b) Influence of habitat on the foraging distances of the fruit bat, Artibeus jamaicensis. J Mammal 59(3):622–624

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases (molecular evolution/mitochondrial DNA/nucleotide diversity). Proc Natl Acad Sci U S A 76(10):5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norberg UM, Rayner MV (1987) Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond Ser B Biol Sci 326(1179):335–427

    Article  Google Scholar 

  • Olea PP, Mateo-Tomás P, de Frutos A (2010) Estimating and modelling bias of the hierarchical partitioning public-domain software: implications in environmental management and conservation. PLoS One 5(7):e11698

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega J, Castro-Arellano I (2001) Artibeus jamaicensis. Mamm Species 662:1–9

  • Ortega J, Maldonado JE, Wilkinson GS, Arita HT, Fleischer RC (2003) Male dominance, paternity, and relatedness in the Jamaican fruit-eating bat (Artibeus jamaicensis). Mol Ecol 12:2409–2415

    Article  PubMed  Google Scholar 

  • Pinto N, Keitt TH (2008) Scale-dependent responses to forest cover displayed by frugivore bats. Oikos 117:1725–1731

    Article  Google Scholar 

  • Pulido-Solís MT (2000) Haciendas de Chiapas. CONECULTA-Chiapas, Tuxtla Gutiérrez

    Google Scholar 

  • Pumo DE, Goldin EZ, Elliot B (1988) Mitochondrial DNA polymorphism in three Antillean island populations of the fruit bat, Artibeus jamaicensis. Mol Biol 5(1):79–89

    CAS  Google Scholar 

  • Pumo DE, Kim I, Remsen J, Phillips CJ, Genoways HH (1996) Molecular systematics of the fruit bat, Artibeus jamaicensis: origin of an unusual island population. J Mammal 77(2):491–503

    Article  Google Scholar 

  • Ramírez-Marcial N, González-Espinosa M, Camacho-Cruz A, Ortiz-Aguilar D (2010) Forest restoration in Lagunas de Montebello National Park, Chiapas, Mexico. Ecol Restor 28(3):354–360

    Article  Google Scholar 

  • Ripperger SP, Tschapka M, Kalko EKV, Rodriguez-Herrera B, Mayer F (2013) Life in a mosaic landscape: anthropogenic habitat fragmentation affects genetic population structure in a frugivorous bat species. Conserv Genet 14:925–934

    Article  Google Scholar 

  • Ripperger SP, Tschapka M, Kalko EKV, Rodriguez-Herrera B, Mayer F (2014) Resisting habitat fragmentation: high genetic connectivity among populations of the frugivorous bat Carollia castanea in an agricultural landscape. Agric Ecosyst Environ 185:9–15

  • Ruiz EA, Vargas-Miranda B, Zúñiga G (2013) Late-Pleistocene phylogeography and demographic history of two evolutionary linages of Artibeus jamaicensis (Chiroptera: Phyllostomidae) in Mexico. Acta Chiropterol 15(1):19–33

    Article  Google Scholar 

  • Ruz MH (1992) Savia india, floración ladina. Apuntes para una historia de las fincas comitecas (siglos XVIII y XIX). CONACULTA, Mexico city

    Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32

    Article  Google Scholar 

  • Sikes RS, the Animal Care and Use Committee of the American Society of Mammalogists (2016) 2016 guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal 92(1):235–253

    Article  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner MG, Gardner RH, RV O’N (2001) Landscape ecology in theory and practice: pattern and process. Springer-Verlag, New York

    Google Scholar 

  • Vázquez-Domínguez E, Mendoza-Martínez A, Orozco-Lugo L, Cuarón AD (2013) High dispersal and generalist habits of the bat Artibeus jamaicensis on Cozumel Island, México: an assessment using molecular genetics. Acta Chiropterol 15(2):411–421

    Article  Google Scholar 

  • Verbyla DL (1995) Satellite remote sensing of natural resources. CRC Press, Boca Raton

    Google Scholar 

  • Walsh C, Mac Nally R (2013) hier.part: hierarchical partitioning. R Package, version 1.0–4. Available from: http://cran.au.r-project.org

  • Wan QH, Wu H, Fujihara T, Fang SG (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Blanchet FG, Koper N (2014) Measuring habitat fragmentation: an evaluation of landscape patter metrics. Methods Ecol Evol 5(7):634–646

    Article  Google Scholar 

  • Worthington-Wilmer JW, Barratt E (1996) A non-lethal method of tissue sampling for genetic studies of chiropteran. Bat Res News 37:1–3

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28(2):114–138

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Lorenzo and J. Bolaños from the Colección Mastozoológica (ECOSUR-SCLC), for housing the tissue samples. We appreciate the support of the PNLM-CONANP authorities, staff and park rangers, especially O. Cervantes and A. León, as well as the support of G. Lalo Jacinto and the authorities of the Instituto Nacional de Antropología e Historia (INAH), for permission to work in the Chinkultic archeological site. We are grateful with G. Castellanos, B. Cruz and C. Lorenzo for the revision of early versions of this manuscript. The Instituto Politécnico Nacional (IPN) of Mexico provided support during fieldwork. Finally, we thank landowners and local authorities for permission to work in the area.

Funding

This project was partially funded by Idea Wild. E. M. Leiva-González received a scholarship (No. 597881) provided by the Consejo Nacional de Ciencia y Tecnología (CONACyT-Mexico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elida María Leiva-González.

Additional information

Communicated by: Joanna Stojak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiva-González, E.M., Navarrete-Gutiérrez, D., Ruiz-Montoya, L. et al. Analysis of the contribution of landscape attributes on the genetic diversity of Artibeus jamaicensis Leach, 1821. Mamm Res 64, 223–233 (2019). https://doi.org/10.1007/s13364-018-0403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-018-0403-z

Keywords

Navigation