Skip to main content
Log in

Ion-Molecule Clustering in Differential Mobility Spectrometry: Lessons Learned from Tetraalkylammonium Cations and their Isomers

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Differential mobility spectrometry (DMS) can distinguish ions based upon the differences in their high- and low-field ion mobilities as they experience the asymmetric waveform applied to the DMS cell. These mobilities are known to be influenced by the ions’ structure, m/z, and charge distribution (i.e., resonance structures) within the ions themselves, as well as by the gas-phase environment of the DMS cell. While these associations have been developed over time through empirical observations, the exact role of ion structures or their interactions with clustering molecules remains generally unknown. In this study, that relationship is explored by observing the DMS behaviors of a series of tetraalkylammonium ions as a function of their structures and the gas-phase environment of the DMS cell. To support the DMS experiments, the basin-hopping search strategy was employed to identify candidate cluster structures for density functional theory treatment. More than a million cluster structures distributed across 72 different ion-molecule cluster systems were sampled to determine global minimum structures and cluster binding energies. This joint computational and experimental approach suggests that cluster geometry, in particular ion-molecule intermolecular separation, plays a critical role in DMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Purves, R.W., Guevremont, R.: Electrospray ionization high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal. Chem. 71, 2346–2357 (1999)

    Article  CAS  Google Scholar 

  2. Eiceman, G., Karpas, Z.: Ion mobility spectrometry, 2nd edn. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  3. Krylov, E.V., Nazarov, E.G., Miller, R.A.: Differential mobility spectrometer: model of operation. Int. J. Mass Spectrom. 226, 76–85 (2007)

    Article  Google Scholar 

  4. Shvartsburg, A.A.: Differential ion mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS. CRC Press, Boca Raton (2009)

    Google Scholar 

  5. Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G.: Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int. J. Mass Spectrom. 298, 45–54 (2010)

    Article  CAS  Google Scholar 

  6. Jasak, J., Le Blanc, Y., Speer, K., Billian, P., Schoening, R.M.: Analysis of triazole-based metabolites in plant materials using differential mobility spectrometry to improve LC/MS/MS selectivity. J. AOAC Int. 95, 1768–1776 (2012)

    Article  CAS  Google Scholar 

  7. Jin, W., Jarvis, M., Star-Weinstock, M., Altemus, M.: A sensitive and selective LC-differential mobility-mass spectrometric analysis of allopregnanolone and pregnanolone in human plasma. Anal. Bioanal. Chem. 405, 9497–9508 (2013)

    Article  CAS  Google Scholar 

  8. Barnett, D.A., Ells, B., Guevremont, R., Purves, R.W.: Separation of leucine and isoleucine by electrospray ionization high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 1279–1284 (1999)

    Article  CAS  Google Scholar 

  9. Parson, W.B., Schneider, B.B., Kertesz, V., Corr, J.J., Covey, T.R., Van Berkel, G.J.: Rapid analysis of isomeric exogenous metabolites by differential mobility spectrometry-mass spectrometry. Rapid Commun. Mass Spectrom. 25, 3382–3386 (2011)

    Article  CAS  Google Scholar 

  10. Campbell, J.L., Le Blanc, J.C.Y., Schneider, B.B.: Probing electrospray ionization dynamics using differential mobility spectrometry: the curious case of 4-aminobenzoic acid. Anal. Chem. 84, 7857–7864 (2012)

    Article  CAS  Google Scholar 

  11. Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G.: Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur. J. Mass Spectrom. 16, 57–71 (2010)

    Article  CAS  Google Scholar 

  12. Krylov, E.V., Nazarov, E.G.: Electric field dependence of the ion mobility. Int. J. Mass Spectrom. 285, 149–156 (2009)

    Article  CAS  Google Scholar 

  13. Kafle, A., Coy, S.L., Wong, B.M., Fornace Jr., A.J., Glick, J.J., Vouros, P.: Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J. Am. Soc. Mass Spectrom. (2014). 25, 1098–1113 (2014)

  14. Levin, D.S., Vouros, P., Miller, R.A., Nazarov, E.G., Morris, J.C.: Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal. Chem. 78, 96–106 (2006)

    Article  CAS  Google Scholar 

  15. Schneider, B.B., Nazarov, E.G., Covey, T.R.: Peak capacity in differential mobility spectrometry: effects of transport gas and modifiers. Int. J. Ion Mobil. Spectrom. 82, 1867–1880 (2012)

    Google Scholar 

  16. Viidanoja, J., Sysoev, A., Adamov, A., Kotiaho, T.: Tetraalkylammonium halides as chemical standards for positive electrospray ionization with ion mobility spectrometry/mass spectrometry. Rapid Commun. Mass Spectrom. 19, 3051–3055 (2005)

    Article  CAS  Google Scholar 

  17. Ude, S., de la Mora, J.F.: Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J. Aerosol Sci. 36, 1224–1237 (2005)

    Article  CAS  Google Scholar 

  18. Fernández-Maestre, R., Harden, C.S., Ewing, R.G., Crawford, C.L., Hill Jr., H.H.: Chemical standards in ion mobility spectrometry. Analyst 135, 1433–1442 (2010)

    Article  Google Scholar 

  19. Campuzano, I.D.G., Bush, M.F., Robinson, C.V., Beaumont, C., Richardson, K., Kim, H., Kim, H.I.: Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross-sections. Anal. Chem. 84, 1026–1033 (2012)

    Article  CAS  Google Scholar 

  20. Demoranville, L.T., Houssiau, L., Gillen, G.: Behavior and evaluation of tetraalkylammonium bromides as instrument test materials in thermal desorption ion mobility spectrometers. Anal. Chem. 85, 2652–2658 (2013)

    Article  CAS  Google Scholar 

  21. Kim, H., Kim, H.I., Johnson, P.V., Beegle, L.W., Beauchamp, J.L., Goddard, W.A., Kanik, I.: Experimental and theoretical investigation into the correlation between mass and ion mobility for choline and other ammonium cations in N2. Anal. Chem. 80, 1928–1936 (2008)

    Article  CAS  Google Scholar 

  22. Beers, W.H., Reich, E.: Structure and activity of acetylcholine. Nature 228, 917–922 (1970)

    Article  CAS  Google Scholar 

  23. McBain, A.J., Ledder, R.G., Moore, L.E., Catrenich, C.E., Gilbert, P.: Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 70, 3449–3456 (2004)

    Article  CAS  Google Scholar 

  24. Saielli, G., Scorrano, G., Bagno, A., Wakisaka, A.: Solvation of tetraalkylammonium chlorides in acetonitrile–water mixtures: mass spectrometry and molecular dynamics simulations. Chem. Phys. Chem. 6, 1307–1315 (2005)

    Article  CAS  Google Scholar 

  25. Fry, A.J., Steffen, L.K.: On the nature of tetraalkylammonium ions in common electrochemical solvents: general and specific solvation—quantitative aspects. J. Electroanal. Chem. 638, 218–224 (2010)

    Article  CAS  Google Scholar 

  26. Wales, D.J., Doye, J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

    CAS  Google Scholar 

  27. Collings, B.A., Romaschin, M.A.: MS/MS of ions in a low pressure linear ion trap using a pulsed gas. J. Am. Soc. Mass Spectrom. 20, 1714–1717 (2009)

    Article  CAS  Google Scholar 

  28. Guna, M., Biesenthal, T.A.: Performance enhancements of mass selective axial ejection from a linear ion trap. J. Am. Soc. Mass Spectrom. 20, 1132–1140 (2009)

    Article  CAS  Google Scholar 

  29. Krylov, E.V., Coy, S.L., Vandermey, J., Schneider, B.B., Covey, T.R., Nazarov, E.G.: Selection and generation of waveforms for differential mobility spectrometry. Rev. Sci. Instrum. 81, 024101–024111 (2010)

  30. Harding, D.J., Gruene, P., Haertelt, M., Meijer, G., Fielicke, A., Hamilton, S.M., Hopkins, W.S., Mackenzie, S.R., Neville, S.P., Walsh, T.R.: Probing the structures of gas-phase rhodium cluster cations by far-infrared spectroscopy. J. Chem. Phys. 133, 214304 (2010)

    CAS  Google Scholar 

  31. Hopkins, W.S., Marta, R.A., McMahon, T.B.: Proton-bound 3-cyanophenylalanine trimethylamine clusters: isomer-specific fragmentation pathways and evidence of gas-phase zwitterions. J. Phys. Chem. A 117, 214304-1–214304-9 (2013)

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  33. Wiberg, K.B., Rablen, P.R.: Comparison of atomic charges derived via different procedures. J. Comput. Chem. 14, 1504–1518 (1993)

    Article  CAS  Google Scholar 

  34. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    CAS  Google Scholar 

  35. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  36. Simon, S., Duran, M., Dannenberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 105, 11024–11031 (1996)

    CAS  Google Scholar 

  37. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge high performance computing support from the SHARCNET consortium of Compute Canada. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support in the form of a Discovery grant and an ENGAGE grant (EGP #449354-13). The authors thank Mr. John Lape for help with computational aspects of this study. They also thank Professor Scott McLuckey (Purdue University) and Professor Terry McMahon (University of Waterloo), as well as Dr. Bradley Schneider and Dr. Yves Le Blanc (AB SCIEX) for helpful conversations and critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Larry Campbell or W. Scott Hopkins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, J.L., Zhu, M. & Hopkins, W.S. Ion-Molecule Clustering in Differential Mobility Spectrometry: Lessons Learned from Tetraalkylammonium Cations and their Isomers. J. Am. Soc. Mass Spectrom. 25, 1583–1591 (2014). https://doi.org/10.1007/s13361-014-0939-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0939-3

Key words

Navigation