Skip to main content
Log in

Differentiation and Distributions of DNA/Cisplatin Crosslinks by Liquid Chromatography-Electrospray Ionization-Infrared Multiphoton Dissociation Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Liquid chromatography-electrospray ionization-infrared multiphoton dissociation (IRMPD) mass spectrometry was developed to investigate the distributions of intrastrand crosslinks formed between cisplatin and two oligodeoxynucleotides (ODNs), d(A1T2G3G4G5T6A7C8C9C10A11T12) (G3-D) and its analog d(A1T2G3G4G5T6T7C8C9C10A11T12) (G3-H), which have been reported to adopt different secondary structures in solution. Based on the formation of site-specific fragment ions upon IRMPD, two isobaric crosslink products were differentiated for each ODN. The preferential formation of G3G4 and G4G5 crosslinks was determined as a function of reaction conditions, including incubation temperature and presence of metal ions. G3-D consistently exhibited a greater preference for formation of the G4G5 crosslink compared with the G3-H ODN. The ratio of G3G4:G4G5 crosslinks increased for both G3-D and G3-H at higher incubation temperatures or when metal salts were added. Comparison of the IRMPD fragmentation patterns of the unmodified ODNs and the intramolecular platinated crosslinks indicated that backbone cleavage was significantly suppressed near the crosslink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Crews, S., Ojala, D., Posakony, J., Nishiguchi, J., Attardi, G.: Nucleotide-sequence of a region of human mitochondrial-DNA containing the precisely identified origin of replication. Nature 277(5693), 192–198 (1979)

    Article  CAS  Google Scholar 

  2. Roth, D.B., Menetski, J.P., Nakajima, P.B., Bosma, M.J., Gellert, M.: V(D)J recombination: Broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70(6), 983–991 (1992)

    Article  CAS  Google Scholar 

  3. Gacy, A.M., Goellner, G., Juranic, N., Macura, S., McMurray, C.T.: Trinucleotide repeats that expand in human-disease form hairpin structures in vitro. Cell 81(4), 533–540 (1995)

    Article  CAS  Google Scholar 

  4. Mariappan, S.V.S., Catasti, P., Chen, X., Ratliff, R., Moyzis, R.K., Bradbury, E.M., Gupta, G.: Solution structures of the individual single strands of the fragile X DNA triplets (GCC)(n)center dot(GGC)(n). Nucleic Acids Res. 24(4), 784–792 (1996)

    Article  CAS  Google Scholar 

  5. Varani, G.: Exceptionally stable nucleic-acid hairpins. Annu. Rev. Biophys. Biomol. Struct. 24, 379–404 (1995)

    Article  CAS  Google Scholar 

  6. Wadkins, R.M.: Targeting DNA secondary structures. Curr. Med. Chem. 7(1), 1–15 (2000)

    Article  CAS  Google Scholar 

  7. Metzler, R., Ambjornsson, T., Hanke, A., Zhang, Y.L., Levene, S.: Single DNA conformations and biological function. J. Computat Theoret Nanosci. 4(1), 1–49 (2007)

    CAS  Google Scholar 

  8. Nguyen, B., Wilson, W.D.: The effects of hairpin loops on ligand–DNA interactions. J. Phys. Chem. B 113(43), 14329–14335 (2009)

    Article  CAS  Google Scholar 

  9. Lah, J., Drobnak, I., Dolinar, M., Vesnaver, G.: What drives the binding of minor groove-directed ligands to DNA hairpins. Nucleic Acids Res. 36(3), 897–904 (2008)

    Article  CAS  Google Scholar 

  10. Hernandez, B., Baumruk, V., Leulliot, N., Gouyette, C., Huynh-Dinh, T., Ghomi, M.: Thermodynamic and structural features of ultrastable DNA and RNA hairpins. J. Mol. Struct. 651, 67–74 (2003)

    Article  Google Scholar 

  11. Jung, J.M., Van Orden, A.: Folding and unfolding kinetics of DNA hairpins in flowing solution by multiparameter fluorescence correlation spectroscopy. J. Phys. Chem. B 109(8), 3648–3657 (2005)

    Article  CAS  Google Scholar 

  12. Grunwell, J.R., Glass, J.L., Lacoste, T.D., Deniz, A.A., Chemla, D.S., Schultz, P.G.: Monitoring the conformational fluctuations of DNA hairpins using single-pair fluorescence resonance energy transfer. J. Am. Chem. Soc. 123(18), 4295–4303 (2001)

    Article  CAS  Google Scholar 

  13. Orden, A.V., Jung, J.: Fluorescence correlation spectroscopy for probing the kinetics and mechanisms of DNA hairpin formation. Biopolymers 89(1), 1–16 (2008)

    Article  Google Scholar 

  14. Kim, J., Doose, S., Neuweiler, H., Sauer, M.: The initial step of DNA hairpin folding: A kinetic analysis using fluorescence correlation spectroscopy. Nucleic Acids Res. 34(9), 2516–2527 (2006)

    Article  CAS  Google Scholar 

  15. Jaumot, J., Eritja, R., Navea, S., Gargallo, R.: Classification of nucleic acids structures by means of the chemometric analysis of circular dichroism spectra. Anal. Chim. Acta. 642(1–2), 117–126 (2009)

    Article  CAS  Google Scholar 

  16. Johnson, W.C.: CD of Nucleic Acids. Berova, N., Nakanishi, K., Woody R.W., (eds.) Circular Dichroism, Wiley-VCH, (2000)

  17. Avizonis, D.Z., Kearns, D.R.: Structural characterization of d(CAACCCGTTG) and d(CAACGGGTTG) mini-hairpin loops by heteronuclear NMR—the effects of purines versus pyrimidines in DNA hairpins. Nucleic Acids Res. 23(7), 1260–1268 (1995)

    Article  CAS  Google Scholar 

  18. Lam, S.L., Chi, L.M.: Use of chemical shifts for structural studies of nucleic acids. Prog. Nuclear Magnetic Res. Spectrosc. 56(3), 289–310 (2010)

    Article  CAS  Google Scholar 

  19. Ghosh, M., Kumar, N.V., Varshney, U., Chary, K.V.R.: Structural characterization of a uracil containing hairpin DNA by NMR and molecular dynamics. Nucleic Acids Res. 27(19), 3938–3944 (1999)

    Article  CAS  Google Scholar 

  20. Zimmerman, S.B., Pheiffer, B.H.: Direct demonstration that the ethanol-induced transition of DNA is between the A-form and B-form X-ray-diffraction study. J. Mol. Biol. 135(4), 1023–1027 (1979)

    Article  CAS  Google Scholar 

  21. Shubsda, M., Goodisman, J., Dabrowiak, J.C.: Characterization of hairpin–duplex interconversion of DNA using polyacrylamide gel electrophoresis. Biophys. Chem. 76(2), 95–115 (1999)

    Article  CAS  Google Scholar 

  22. Fichtinger-Schepman, A.M.J., Van der Veer, J.L., Den Hartog, J.H.J., Lohman, P.H.M., Reedijk, J.: Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: Formation, identification, and quantitation. Biochemistry 24(3), 707–713 (1985)

    Article  CAS  Google Scholar 

  23. Fichtinger-Schepman, A.M.J., van Oosterom, A.T., Lohman, P.H.M., Berends, F.: cis-Diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: Quantitative immunochemical detection of the adduct induction and removal after a single dose of cis-diamminedichloroplatinum(ii). Cancer Res. 47(11), 3000–3004 (1987)

    CAS  Google Scholar 

  24. Mangrum, J.B., Farrell, N.P.: Excursions in polynuclear platinum DNA binding. Chem. Commun. 46(36), 6640–6650 (2010)

    Article  CAS  Google Scholar 

  25. Meroueh, M., Kjellstrom, J., Martensson, K.S.M., Elmroth, S.K.C., Chow, C.S.: Reactions of platinum(II) complexes with a DNA hairpin, d(CGCGTTGTTCGCG): Structural characterization and kinetic studies. Inorg. Chim. Acta 297(1/2), 145–155 (2000)

    Article  CAS  Google Scholar 

  26. Iwamoto, M., Mukundan, S., Marzilli, L.G.: DNA adduct formation by platinum anticancer drugs—insight into an unuaual GPG intrastrand cross-link in a hairpin-like DNA oligonucleotide using NMR and distance geometry methods. J. Am. Chem. Soc. 116(14), 6238–6244 (1994)

    Article  CAS  Google Scholar 

  27. Yohannes, P.G., Zon, G., Doetsch, P.W., Marzilli, L.G.: DNA hairpin formation in adducts with platinum anticancer drugs—gel-eletrophoresis provides new information and a caveat. J. Am. Chem. Soc. 115(12), 5105–5110 (1993)

    Article  CAS  Google Scholar 

  28. Villanueva, J.M., Jia, X., Yohannes, P.G., Doetsch, P.W., Marzilli, L.G.: Cisplatin [cis-Pt(NH3)(2)Cl-2] and cis- Pt(NH3)(2)(H2O)(2) (2+) intrastrand cross-linking reactions at the telomere GGGT DNA sequence embedded in a duplex, a hairpin, and a bulged duplex: Use of Mg2+ and Zn2+ to convert a hairpin to a bulged duplex. Inorg. Chem. 38(26), 6069–6080 (1999)

    Article  CAS  Google Scholar 

  29. Jia, X., Zon, G., Marzilli, L.G.: Multinuclear NMR investigation of zinc(2+) binding to a dodecamer oligodeoxyribonucleotide: Insights from carbon-13 NMR spectroscopy. Inorg. Chem. 30(2), 228–239 (1991)

    Article  CAS  Google Scholar 

  30. McLuckey, S., Van Berkel, G., Glish, G.: Tandem mass spectrometry of small, multiply charged oligonucleotides. J. Am. Soc. Mass Spectrom. 3(1), 60–70 (1992)

    Article  CAS  Google Scholar 

  31. McLuckey, S.A., Habibi-Goudarzi, S.: Decompositions of multiply charged oligonucleotide anions. J. Am. Chem. Soc. 115(25), 12085–12095 (1993)

    Article  CAS  Google Scholar 

  32. Wu, J., McLuckey, S.A.: Gas-phase fragmentation of oligonucleotide ions. Int. J. Mass Spectrom. 237(2/3), 197–241 (2004)

    Article  CAS  Google Scholar 

  33. Cerny, R.L., Tomer, K.B., Gross, M.L., Grotjahn, L.: Fast atom bombardment combined with tandem mass spectrometry for determining structures of small oligonucleotides. Anal. Biochem. 165(1), 175–182 (1987)

    Article  CAS  Google Scholar 

  34. Wang, Z., Wan, K.X., Ramanathan, R., Taylor, J.S., Gross, M.L.: Structure and fragmentation mechanisms of isomeric T-rich oligodeoxynucleotides: A comparison of four tandem mass spectrometric methods. J. Am. Soc. Mass Spectrom. 9(7), 683–691 (1998)

    Article  CAS  Google Scholar 

  35. Zhang, Q.R., Yu, E.T., Kellersberger, K.A., Crosland, E., Fabris, D.: Toward building a database of bifunctional probes for the MS3D investigation of nucleic acids structures. J. Am. Soc. Mass Spectrom. 17(11), 1570–1581 (2006)

    Article  CAS  Google Scholar 

  36. Le Pla, R.C., Ritchie, K.J., Henderson, C.J., Wolf, C.R., Harrington, C.F., Farmer, P.B.: Development of a liquid chromatography-electrospray ionization tandem mass spectrometry method for detecting oxaliplatin–DNA intrastrand cross-links in biological samples. Chem. Res. Toxicol. 20(8), 1177–1182 (2007)

    Article  Google Scholar 

  37. Beck, J.L., Colgrave, M.L., Ralph, S.F., Sheil, M.M.: Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom. Rev. 20(2), 61–87 (2001)

    Article  CAS  Google Scholar 

  38. Anichina, J., Zhao, Y., Hrudey, S.E., Schreiber, A., Li, X.-F.: Electrospray ionization tandem mass spectrometry analysis of the reactivity of structurally related bromo-methyl-benzoquinones toward oligonucleotides. Anal. Chem. 83(21), 8145–8151 (2011)

    Article  CAS  Google Scholar 

  39. Barry, J.P., Vouros, P., Vanschepdael, A., Law, S.J.: Mass and sequence verification of modified oligonucleotides using electrospray tandem mass spectrometry. J. Mass Spectrom. 30(7), 993–1006 (1995)

    Article  CAS  Google Scholar 

  40. Iannitti-Tito, P., Weimann, A., Wickham, G., Sheil, M.M.: Structural analysis of drug-DNA adducts by tandem mass spectrometry. Analyst 125(4), 627–633 (2000)

    Article  CAS  Google Scholar 

  41. Egger, A.E., Hartinger, C.G., Ben Hamidane, H., Tsybin, Y.O., Keppler, B.K., Dyson, P.J.: High resolution mass spectrometry for studying the interactions of cisplatin with oligonucleotides. Inorg. Chem. 47(22), 10626–10633 (2008)

    Article  CAS  Google Scholar 

  42. Nyakas, A., Eymann, M., Schurch, S.: The influence of cisplatin on the gas-phase dissociation of oligonucleotides studied by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 20(5), 792–804 (2009)

    Article  CAS  Google Scholar 

  43. Stucki, S.R., Nyakas, A., Schurch, S.: Tandem mass spectrometry of platinated quadruplex DNA. J. Mass Spectrom. 46(12), 1288–1296 (2011)

    Article  CAS  Google Scholar 

  44. Nyakas, A., Stucki, S.R., Schurch, S.: Tandem mass spectrometry of modified and platinated oligoribonucleotides. J. Am. Soc. Mass Spectrom. 22(5), 875–887 (2011)

    Article  CAS  Google Scholar 

  45. Smith, S.I., Brodbelt, J.S.: Hybrid activation methods for elucidating nucleic acid modifications. Anal. Chem. 83(1), 303–310 (2011)

    Article  CAS  Google Scholar 

  46. Xu, Z., Shaw, J.B., Brodbelt, J.S.: Comparison of MS/MS methods for characterization of DNA/cisplatin adducts. J. Am. Soc. Mass Spectrom. 24(2), 265–272 (2012)

    Article  Google Scholar 

  47. Mo, J.J., Hakansson, K.: Characterization of nucleic acid higher order structure by high-resolution tandem mass spectrometry. Anal. Bioanal. Chem. 386(3), 675–681 (2006)

    Article  CAS  Google Scholar 

  48. Mo, J.J.E., Todd, G.C., Hakansson, K.: Characterization of nucleic acid higher order structure by gas-phase H/D exchange in a quadrupole-FT-ICR mass spectrometer. Biopolymers 91(4), 256–264 (2009)

    Article  CAS  Google Scholar 

  49. Fabris, D., Kellersberger, K.A., Wilhide, J.A.: Higher-order structure of nucleic acids in the gas phase: top-down analysis of base-pairing interactions. Int. J. Mass Spectrom. 312, 155–162 (2012)

    Article  CAS  Google Scholar 

  50. Wan, K.X., Gross, J., Hillenkamp, F., Gross, M.L.: Fragmentation mechanisms of oligodeoxynucleotides studied by H/D exchange and electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 12(2), 193–205 (2001)

    Article  CAS  Google Scholar 

  51. Premstaller, A., Huber, C.G.: Factors determining the performance of triple quadrupole, quadrupole ion trap and sector field mass spectrometer in electrospray ionization mass spectrometry. 2. Suitability for de novo sequencing. Rapid Commun. Mass Spectrom. 15(13), 1053–1060 (2001)

    Article  CAS  Google Scholar 

  52. Shammel Baker, E., Dupuis, N., Bowers, M.T.: DNA hairpin, pseudoknow, and cruciform stability in a solvent-free environment. J. Phys. Chem. B 113, 1722–1727 (2009)

    Article  Google Scholar 

  53. Anastassopoulou, J.: Metal–DNA interactions. J. Mol. Struct. 651–653, 19–26 (2003)

    Article  Google Scholar 

  54. Langlais, M., Tajmirriahi, H.A., Savoie, R.: Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ions on calf thymus DNA: binding sites and conformational changes. Biopolymers 30(7/8), 743–752 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from NIH (RO1 GM65956) and the Welch Foundation (F1155) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer S. Brodbelt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Oligonucleotide fragmentation nomenclature. Internal fragments result from a double backbone cleavage. The internal ions have a phosphate at their 5′ end and a furan at the 3′ terminal. (PDF 62 kb)

Supplemental Figure 2

Expanded regions of IRMPD spectra for (A) G3-D/cisplatin and (B) G3-H/cisplatin adducts showing some of the diagnostic fragment ions that allow differentation of the adducts. (PDF 46 kb)

Supplemental Figure 3

Relative abundances of IRMPD fragment ions at each backbone cleavage site for (a) all fragments of [G3-D-3H]3-; (b) all fragments of [G3-H-3H]3-. (PDF 53 kb)

Supplemental Table 1

The relative abundances of fragments upon IRMPD for G3-D/cisplatin cross-links (3-) (PDF 56 kb)

Supplemental Table 2

The relative abundances of fragments upon IRMPD for G3-H/cisplatin cross-links (3-). (PDF 57 kb)

Supplemental Table 3

The relative abundances of fragments upon IRMPD for unmodified G3-D and G3-H (3-). (PDF 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Brodbelt, J.S. Differentiation and Distributions of DNA/Cisplatin Crosslinks by Liquid Chromatography-Electrospray Ionization-Infrared Multiphoton Dissociation Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 71–79 (2014). https://doi.org/10.1007/s13361-013-0755-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0755-1

Key words

Navigation