Skip to main content

Advertisement

Log in

Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H] was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Knekt, P., Kumpulainen, J., Jarvinen, R., Rissanen, H., Heliovaara, M., Reunanen, A., Hakulinen, T., Aromaa, A.: Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76, 560–568 (2002)

    CAS  Google Scholar 

  2. Mink, P.J., Scrafford, C.G., Barraj, L.M., Harnack, L., Nettleton, A.J., Jacobs, D.R.: Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am. J. Clin. Nutr. 85, 895–909 (2007)

    CAS  Google Scholar 

  3. Sesso, H.D., Gaziano, J.M., Liu, S., Buring, J.E.: Flavonoid intake and the risk of cardiovascular disease in women. Am. J. Clin. Nutr. 77, 1400–1408 (2003)

    CAS  Google Scholar 

  4. Cassidy, A., Rimm, E.B., O’Reilly, E.J., Logroscino, G., Kay, C., Chiuve, S.E., Rexrode, K.M.: Dietary flavonoids and risk of stroke in women. Stroke 43, 946–951 (2012)

    Article  CAS  Google Scholar 

  5. Pourcel, L., Routaboul, J.M., Cheynier, V., Lepiniec, L., Debeaujon, I.: Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci. 12, 29–36 (2007)

    Article  CAS  Google Scholar 

  6. Makris, D.P., Rossiter, J.T.: Heat-induced metal-catalyzed oxidative degradation of quercetin and rutin (quercetin-3-o-rhamnosylglucoside) in aqueous model systems. J. Agric. Food Chem. 48, 3830–3838 (2000)

    Article  CAS  Google Scholar 

  7. Buchner, N., Krumbein, A., Rohn, S., Kroh, L.W.: Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun. Mass Spectrom. 20, 3229–3235 (2006)

    Article  CAS  Google Scholar 

  8. Zhang, M., Chen, H., Li, J., Pei, Y., Liang, Y.: Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. Lebensmittel-Wissenschaft Technol. 43, 181–185 (2010)

    CAS  Google Scholar 

  9. Xu, B., Chang, S.K.C.: Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J. Agric. Food Chem. 57, 4754–4764 (2009)

    Article  CAS  Google Scholar 

  10. Barnes, J.S., Nguyen, H.P., Shen, S., Schug, K.A.: General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography–electrospray ionization-ion trap-time of flight-mass spectrometry. J. Chromatogr. A 1216, 4728–4735 (2009)

    Article  CAS  Google Scholar 

  11. Makris, D.P., Rossiter, J.T.: Hydroxyl free radical-mediated oxidative degradation of quercetin and morin: a preliminary investigation. J. Food Comp. Anal. 15, 103–113 (2002)

    Article  CAS  Google Scholar 

  12. Ou, B., Hampsch-Woodill, M., Prior, R.L.: Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49, 4619–4626 (2001)

    Article  CAS  Google Scholar 

  13. Pulido, R., Bravo, L., Saura-Calixto, F.: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402 (2000)

    Article  CAS  Google Scholar 

  14. Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP Asay. Anal. Biochem. 239, 70–76 (1996)

    Article  CAS  Google Scholar 

  15. Chien, J.T., Hsu, D.J., Inbaraj, B.S., Chen, B.H.: Integral kinetic model for studying quercetin degradation and oxidation as affected by cholesterol during heating. Int. J. Mol. Sci. 11, 2805–2820 (2010)

    Article  CAS  Google Scholar 

  16. López-Alarcón, C., Denicola, A.: Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal. Chim. Acta 763, 1–10 (2013)

    Article  Google Scholar 

  17. Makris, D.P., Rossiter, J.T.: An investigation on structural aspects influencing product formation in enzymatic and chemical oxidation of quercetin and related flavonols. Food Chem. 77, 177–185 (2002)

    Article  CAS  Google Scholar 

  18. Krishnamachari, V., Levine, L.H., Pare, P.W.: Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging. J. Agric. Food Chem. 50, 4357–4363 (2002)

    Article  CAS  Google Scholar 

  19. Zenkevich, I.G., Eshchenko, A.Y., Makarova, S.V., Vitenberg, A.G., Dobryakov, Y.G., Utsal, V.A.: Identification of the products of oxidation of quercetin by air oxygen at ambient temperature. Molecules 12, 654–672 (2007)

    Article  CAS  Google Scholar 

  20. Pinelo, M., Manzocco, L., Nunez, M.J., Nicoli, M.C.: Solvent effect on quercetin antioxidant capacity. Food Chem. 88, 201–207 (2004)

    Article  CAS  Google Scholar 

  21. Zhou, A., Kikandi, S., Sadik, O.A.: Electrochemical degradation of quercetin: isolation and structural elucidation of the degradation products. Electrochem. Commun. 9, 2246–2255 (2007)

    Article  CAS  Google Scholar 

  22. Zhou, A., Sadik, O.A.: Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study. J. Agric. Food Chem. 56, 12081–12091 (2008)

    Article  CAS  Google Scholar 

  23. Clarke, D.J., Stokes, A.A., Langridge-Smith, P., Mackay, C.L.: Online quench-flow electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for elucidating kinetic and chemical enzymatic reaction mechanisms. Anal. Chem. 82, 1897–904 (2010)

    Article  CAS  Google Scholar 

  24. Northrop, D.B., Simpson, F.B.: New concepts in bioorganic chemistry beyond enzyme kinetics: direct determination of mechanisms by stopped-flow mass spectrometry. Bioorg. Med. Chem. 5, 641–644 (1997)

    Article  CAS  Google Scholar 

  25. Orsnes, H., Graf, T., Degn, H.: stopped-flow mass spectrometry with rotating ball inlet: application to the ketone-sulfite reaction. Anal. Chem. 70, 4751–4754 (1998)

    Article  CAS  Google Scholar 

  26. Kolakowski, B.M., Simmons, D.A., Konermann, L.: Stopped-flow electrospray ionization mass spectrometry: a new method for studying chemical reaction kinetics in solution. Rapid Commun. Mass Spectrom. 14, 772–776 (2000)

    Article  CAS  Google Scholar 

  27. Kolakowski, B.M., Konermann, L.: From small molecule reactions to protein folding: studying biochemical kinetics by stopped-flow electrospray mass spectrometry. Anal. Biochem. 292, 107–114 (2001)

    Article  CAS  Google Scholar 

  28. Konermann, L., Collings, B.A., Douglas, D.J.: Cytochrome c folding kinetics studied by time-resolved electrospray ionization mass spectrometry. Biochemistry 36, 5554–5559 (1997)

    Article  CAS  Google Scholar 

  29. Zechel, D.L., Konermann, L., Withers, S.G., Douglas, D.J.: Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry. Biochemistry 37, 7664–7669 (1998)

    Article  CAS  Google Scholar 

  30. Lee, V.W.S., Chen, Y.L., Konermann, L.: Reconstitution of acid-denatured holomyoglobin studied by time-resolved electrospray ionization mass spectrometry. Anal. Chem. 71, 4154–4159 (1999)

    Article  CAS  Google Scholar 

  31. Sogbein, O.O., Simmons, D.A., Konermann, L.: Effects of pH on the kinetic reaction mechanism of myoglobin unfolding studied by time-resolved electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 11, 312–319 (2000)

    Article  CAS  Google Scholar 

  32. Wilson, D.J., Konermann, L.: A capillary mixer with adjustable reaction chamber volume for millisecond time resolved studies by electrospray mass spectrometry. Anal. Chem. 75, 6408–6414 (2003)

    Article  CAS  Google Scholar 

  33. Barnes, J.S., Schug, K.A.: structural characterization of cyanidin-3,5-diglucoside and pelargonidin-3,5-diglucoside anthocyanins: multi-dimensional fragmentation pathways using high performance liquid chromatography-electrospray ionization-ion trap-time of flight mass spectrometry. Int. J. Mass Spectrom 38, 71–80 (2011)

    Google Scholar 

  34. Tedmon, L., Barnes, J.S., Nguyen, H.P., Schug, K.A.: Differentiating isobaric steroid hormone metabolites using multi-stage tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 399–409 (2013)

    Article  CAS  Google Scholar 

  35. Medvidović-Kosanović, M., Šeruga, M., Jakobek, L., Novak, I.: Electrochemical and antioxidant properties of (+)-catechin, quercetin and rutin. Croat. Chem. Acta 83, 197–207 (2010)

    Google Scholar 

  36. Jovanovic, S.V., Steenken, S., Tosic, M., Marjanovic, B., Simic, M.G.: Flavonoids as Antioxidants. J. Am. Chem. Soc. 116, 4846–4851 (1994)

    Article  CAS  Google Scholar 

  37. Lemanska, K., Woude, H.V.D., Szymusiak, H., Boermsa, M.G., Gliszczynsak-Swiglo, A., Rietjens, I.M.C.M., Tyrakowska, B.: Free Radic. Res. 38, 639–647 (2004)

    Article  CAS  Google Scholar 

  38. Wang, G., Cole, R.B.: Disparity between solution-phase equilibria and charge state distributions in positive-ion electrospray mass spectrometry. Org. Mass Spectrom. 29, 419–427 (1994)

    Article  CAS  Google Scholar 

  39. Schug, K.A., McNair, H.M.: Adduct formation in electrospray ionization mass spectrometry II. Benzoic acid derivatives. J. Chromatogr. A 985, 531–539 (2003)

    Article  CAS  Google Scholar 

  40. Gudkov, S.V., Karp, O.E., Garmash, S.A., Ivanov, V.E., Chernikov, A.V., Manokhin, A.A., Astashev, M.E., Yaguzhinsky, L.S., Bruskov, V.I.: Generation of reactive oxygen species in water under exposure to visible or infrared irradiation at absorption bands of molecular oxygen. Biophysics 57, 1–8 (2012)

    Article  CAS  Google Scholar 

  41. Lei, R., Xu, X., Yu, F., Li, N., Liu, H., Li, K.: A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation. Talanta 75, 1068–1074 (2008)

    Article  CAS  Google Scholar 

  42. Jørgensen, L.V., Cornett, C., Justesen, U., Skibsted, L.H., Dragsted, L.O.: Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring. Free Radic. Res. 29, 339–350 (1998)

    Article  Google Scholar 

  43. Tournaire, C., Hocquaux, M., Beck, I., Oliveros, E., Maurette, M.: Activite Anti-Oxidante de Flavonoides Reactivite Avec le Superoxyde de Potassium en Phase Heterogene. Tetrahedron 50, 9303–9314 (1994)

    Article  CAS  Google Scholar 

  44. Yonekawa, M., Furusho, Y., Sei, Y., Takata, T., Endo, T.: Synthesis and X-ray structural analysis of an acyclic bifunctional vicinal triketone, its hydrate, and its ethanol-adduct. Tetrahedron 69, 4076–4080 (2013)

    Article  CAS  Google Scholar 

  45. Mecinovic, J.R., Hamed, B., Schofield, C.J.: Iron-mediated cleavage of C–C bonds in vicinal tricarbonyl compounds in water. Angew. Chem. Int. Ed. 48, 2796–2800 (2009)

    Article  CAS  Google Scholar 

  46. Wasserman, H.H., Parr, J.: The chemistry of vicinal tricarbonyls and related systems. Acc. Chem. Res. 37, 687–701 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Shimadzu Scientific Instruments, Inc. for their support of instrumentation through the Shimadzu Equipment Grants for Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Schug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, J.S., Foss , F.W. & Schug, K.A. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 1513–1522 (2013). https://doi.org/10.1007/s13361-013-0698-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0698-6

Key words

Navigation