Skip to main content
Log in

Analysis of a Soluble (UreD:UreF:UreG)2 Accessory Protein Complex and Its Interactions with Klebsiella aerogenes Urease by Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBP-UreD:UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A pre-activation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Carter, E.L., Flugga, N., Boer, J.L., Mulrooney, S.B., Hausinger, R.P.: Interplay of metal ions and urease. Metallomics 1, 207–221 (2009)

    Article  CAS  Google Scholar 

  2. Zambelli, B., Musiani, F., Benini, S., Ciurli, S.: Chemistry of Ni2+ in urease: Sensing, trafficking, and catalysis. Acc. Chem. Res. 44, 520–530 (2011)

    Article  CAS  Google Scholar 

  3. Mobley, H.L.T., Hausinger, R.P.: Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 53, 85–108 (1989)

    CAS  Google Scholar 

  4. Witte, C.-P.: Urea metabolism in plants. Plant Sci 180, 431–438 (2011)

    Article  CAS  Google Scholar 

  5. Jabri, E., Carr, M.B., Hausinger, R.P., Karplus, P.A.: The crystal structure of urease from Klebsiella aerogenes. Science 268, 998–1004 (1995)

    Article  CAS  Google Scholar 

  6. Farrugia, M.A., Macomber, L., Hausinger, R.P.: Biosynthesis of the urease metallocenter. J. Biol. Chem. 288, 13178–13185 (2013)

    Article  CAS  Google Scholar 

  7. Lee, M.H., Mulrooney, S.B., Hausinger, R.P.: Purification, characterization, and in vivo reconstitution of Klebsiella aerogenes urease apoenzyme. J. Bacteriol. 172, 4427–4431 (1990)

    CAS  Google Scholar 

  8. Park, I.-S., Carr, M.B., Hausinger, R.P.: In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly. Proc. Natl. Acad. Sci. U. S. A. 91, 3233–3237 (1994)

    Article  CAS  Google Scholar 

  9. Moncrief, M.B.C., Hausinger, R.P.: Purification and activation properties of UreD-UreF-urease apoprotein complexes. J. Bacteriol. 178, 5417–5421 (1996)

    CAS  Google Scholar 

  10. Park, I.-S., Hausinger, R.P.: Evidence for the presence of urease apoprotein complexes containing UreD, UreF, and UreG in cells that are competent for in vivo enzyme activation. J. Bacteriol. 177, 1947–1951 (1995)

    CAS  Google Scholar 

  11. Moncrief, M.B.C., Hausinger, R.P.: Characterization of UreG, identification of a UreD-UreF-UreG complex, and evidence suggesting that a nucleotide-binding site in UreG is required for in vivo metallocenter assembly of Klebsiella aerogenes urease. J. Bacteriol. 179, 4081–4086 (1997)

    CAS  Google Scholar 

  12. Park, I.-S., Hausinger, R.P.: Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science 267, 1156–1158 (1995)

    Article  CAS  Google Scholar 

  13. Lee, M.H., Pankratz, H.S., Wang, S., Scott, R.A., Finnegan, M.G., Johnson, M.K., Ippolito, J.A., Christianson, D.W., Hausinger, R.P.: Purification and characterization of Klebsiella aerogenes UreE protein: A nickel-binding protein that functions in urease metallocenter assembly. Protein Sci. 2, 1042–1052 (1993)

    Article  CAS  Google Scholar 

  14. Soriano, A., Hausinger, R.P.: GTP-dependent activation of urease apoprotein in complex with the UreD, UreF, and UreG accessory proteins. Proc. Natl. Acad. Sci. U. S. A. 96, 11140–11144 (1999)

    Article  CAS  Google Scholar 

  15. Chang, Z., Kuchar, J., Hausinger, R.P.: Chemical crosslinking and mass spectrometric identification of sites of interaction for UreD, UreF, and urease. J. Biol. Chem. 279, 15305–15313 (2004)

    Article  CAS  Google Scholar 

  16. Quiroz-Valenzuela, S., Sukuru, S.C.K., Hausinger, R.P., Kuhn, L.A., Heller, W.T.: The structure of urease activation complexes examined by flexibility analysis, mutagenesis, and small-angle X-ray scattering. Arch. Biochem. Biophys. 480, 51–57 (2008)

    Article  CAS  Google Scholar 

  17. Jabri, E., Karplus, P.A.: Structures of the Klebsiella aerogenes urease apoprotein and two active-site mutants. Biochemistry 35, 10616–10626 (1996)

    Article  CAS  Google Scholar 

  18. Lam, R., Romanov, V., Johns, K., Battaile, K., Wu-Brown, J., Guthrie, J.L., Hausinger, R.P., Pai, E., Chirgadze, N.Y.: Crystal structure of a truncated urease accessory protein UreF from Helicobacter pylori. Proteins 78, 2839–2848 (2010)

    Article  CAS  Google Scholar 

  19. Fong, Y.H., Wong, H.C., Chuck, C.P., Chen, Y.W., Sun, H., Wong, K.-B.: Assembly of the preactivation complex for urease maturation in Helicobacter pylori: Crystal structure of the UreF/UreH protein complex. J. Biol. Chem. 286, 43241–43249 (2011)

    Article  CAS  Google Scholar 

  20. Gasper, R., Scrima, A., Wittinghofer, A.: Structural insights into HypB, a GTP-binding protein that regulates metal binding. J. Biol. Chem. 281, 27492–27502 (2006)

    Article  CAS  Google Scholar 

  21. Zambelli, B., Stola, M., Musiani, F., De Vriendt, K., Samyn, B., Devreese, B., Van Beeumen, J., Dikiy, A., Bryant, D.A., Ciurli, S.: UreG, a chaperone in the urease assembly process, is an intrinsically unstructured GTPase that specifically binds Zn2+. J. Biol. Chem. 280, 4684–4695 (2005)

    Article  CAS  Google Scholar 

  22. Zambelli, B., Musiani, F., Savini, M., Tucker, P., Ciurli, S.: Biochemical studies on Mycobacterium tuberculosis UreG and comparative modeling reveal structural and functional conservation among the bacterial UreG family. Biochemistry 46, 3171–3182 (2007)

    Article  CAS  Google Scholar 

  23. Boer, J.L., Quiroz-Valenzuela, S., Anderson, K.L., Hausinger, R.P.: Mutagenesis of Klebsiella aerogenes UreG to probe nickel binding and interactions with other urease-related proteins. Biochemistry 49, 5859–5869 (2010)

    Article  CAS  Google Scholar 

  24. Carter, E.L., Hausinger, R.P.: Characterization of Klebsiella aerogenes urease accessory protein UreD in fusion with the maltose binding protein. J. Bacteriol. 192, 2294–2304 (2010)

    Article  CAS  Google Scholar 

  25. Boer, J.L., Hausinger, R.P.: Klebsiella aerogenes UreF: Identification of the UreG binding site and role in enhancing the fidelity of urease activation. Biochemistry 51, 2298–2308 (2012)

    Article  CAS  Google Scholar 

  26. Carter, E.L., Boer, J.L., Farrugia, M.A., Flugga, N., Towns, C.L., Hausinger, R.P.: Function of UreB in Klebsiella aerogenes urease. Biochemistry 50, 9296–9308 (2011)

    Article  CAS  Google Scholar 

  27. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  28. Zhong, Y.Y., Hyung, S.J., Ruotolo, B.T.: Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136, 3534–3541 (2011)

    Article  CAS  Google Scholar 

  29. Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Prot. 3, 1139–1152 (2008)

    Article  CAS  Google Scholar 

  30. Hernandez, H., Robinson, C.V.: Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Prot. 2, 715–726 (2007)

    Article  CAS  Google Scholar 

  31. Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T.: Collision cross sections of proteins and their complexes: A calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010)

    Article  CAS  Google Scholar 

  32. Hyung, S.J., Ruotolo, B.T.: Integrating mass spectrometry of intact protein complexes into structural proteomics. Proteomics 12, 1547–1564 (2012)

    Article  CAS  Google Scholar 

  33. Benesch, J.L.P., Ruotolo, B.T.: Mass spectrometry: Come of age for structural and dynamical biology. Curr. Opin. Struct. Biol. 21, 641–649 (2011)

    Article  CAS  Google Scholar 

  34. Taverner, T., Hernandez, H., Sharon, M., Ruotolo, B.T., Matak-Vinkovic, D., Devos, D., Russell, R.B., Robinson, C.V.: Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 41, 617–627 (2008)

    Article  CAS  Google Scholar 

  35. Heck, A.J.R.: Native mass spectrometry: A bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008)

    Article  CAS  Google Scholar 

  36. Sharon, M., Robinson, C.V.: The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76, 167–193 (2007)

    Article  CAS  Google Scholar 

  37. Benesch, J.L.P., Ruotolo, B.T., Simmons, D.A., Robinson, C.V.: Protein complexes in the gas phase: Technology for structural genomics and proteomics. Chem. Rev. 107, 3544–3567 (2007)

    Article  CAS  Google Scholar 

  38. Gingras, A.C., Gstaiger, M., Raught, B., Aebersold, R.: Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8, 645–654 (2007)

    Article  CAS  Google Scholar 

  39. McKay, A.R., Ruotolo, B.T., Ilag, L.L., Robinson, C.V.: Mass measurements of increased accuracy resolve heterogeneous populations of intact ribosomes. J. Am. Chem. Soc. 128, 11433–11442 (2006)

    Article  CAS  Google Scholar 

  40. Benesch, J.L.P.: Collisional activation of protein complexes: Picking up the pieces. J. Am. Soc. Mass Spectrom. 20, 341–348 (2009)

    Article  CAS  Google Scholar 

  41. Benesch, J.L.P., Aquilina, J.A., Ruotolo, B.T., Sobott, F., Robinson, C.V.: Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem. Biol. 13, 597–605 (2006)

    Article  CAS  Google Scholar 

  42. Sobott, F., Robinson, C.V.: Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. Int. J. Mass Spectrom. 236, 25–32 (2004)

    Article  CAS  Google Scholar 

  43. Erba, E.B., Ruotolo, B.T., Barsky, D., Robinson, C.V.: Ion mobility-mass spectrometry reveals the influence of subunit packing and charge on the dissociation of multiprotein complexes. Anal. Chem. 82, 9702–9710 (2010)

    Article  CAS  Google Scholar 

  44. Zhong, Y.Y., Hyung, S.J., Ruotolo, B.T.: Ion mobility-mass spectrometry for structural proteomics. Exp. Rev. Proteom. 9, 47–58 (2012)

    Article  CAS  Google Scholar 

  45. Uetrecht, C., Rose, R.J., van Duijn, E., Lorenzen, K., Heck, A.J.R.: Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655 (2010)

    Article  CAS  Google Scholar 

  46. Balasubramanian, A., Ponnuraj, K.: Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure. J. Mol. Biol. 400, 274–283 (2010)

    Article  CAS  Google Scholar 

  47. Ligabue-Braun, R., Real-Guerra, R., Carlini, C.R., Verli, H.: Evidence-based docking of the urease activation complex. J. Biomol. Struct. Dyn. (2012). doi:10.1080/07391102.2012.713782

Download references

Acknowledgments

The authors thank Dr. Dan Jones and the Mass Spectrometry and Metabolomics Core facility at Michigan State University for assistance with MALDI-TOF MS, along with Dr. Jones and Dr. Lee Macomber for helpful discussions. The authors also thank Joseph Eschweiler (UM) for aiding in the collection of some of the intact MS data on the urease complexes reported here. This project was funded by the National Institutes of Health awards to R.P.H. (DK045686) and to B.T.R. (GM095832).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brandon T. Ruotolo or Robert P. Hausinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 8676 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrugia, M.A., Han, L., Zhong, Y. et al. Analysis of a Soluble (UreD:UreF:UreG)2 Accessory Protein Complex and Its Interactions with Klebsiella aerogenes Urease by Mass Spectrometry. J. Am. Soc. Mass Spectrom. 24, 1328–1337 (2013). https://doi.org/10.1007/s13361-013-0677-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0677-y

Key words

Navigation