Skip to main content
Log in

Particle Production in Reflection and Transmission Mode Laser Ablation: Implications for Laserspray Ionization

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Particles were ablated from laser desorption and inlet ionization matrix thin films with a UV laser in reflection and transmission geometries. Particle size distributions were measured with a combined scanning mobility particle sizer (SMPS) and aerodynamic particle sizer (APS) system that measured particles in the size range from 10 nm to 20 μm. The matrixes investigated were 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), sinapic acid (SA), 2,5-dihydroxy-acetophenone (DHAP), and 2-nitrophloroglucinol (NPG). Nanoparticles with average diameters between 20 and 120 nm were observed in both transmission and reflection geometry. The particle mass distribution was significantly different in reflection and transmission geometry. In reflection geometry, approximately equal mass was distributed between particles in the 20 to 450 nm range of diameters and particles in the 450 nm to 1.5 μm diameter range. In transmission mode, the particle mass distribution was dominated by large particles in the 2 to 20 μm diameter range. Ablation of inlet ionization matrices DHAP and NPG produced particles that were 3 to 4 times smaller compared with the other matrices. The results are consistent with ion formation by nanoparticle melting and breakup or melting and breakup of the large particles through contact with heated inlet surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Trimpin, S., Inutan, E.D., Herath, T.N., McEwen, C.N.: Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions. Mol. Cel. Proteom. 9, 362–367 (2010)

    Article  CAS  Google Scholar 

  2. Trimpin, S., Inutan, E.D., Herath, T.N., McEwen, C.N.: Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal. Chem. 82, 11–15 (2010)

    Article  CAS  Google Scholar 

  3. Inutan, E.D., Wang, B., Trimpin, S.: Commercial Intermediate Pressure MALDI Ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions. Anal. Chem. 83, 678–684 (2011)

    Article  CAS  Google Scholar 

  4. Trimpin, S., Ren, Y., Wang, B., Lietz, C.B., Richards, A.L., Marshall, D.D., Inutan, E.D.: Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer. Anal. Chem. 83, 5469–5475 (2011)

    Article  CAS  Google Scholar 

  5. Overberg, A., Karas, M., Bahr, U., Kaufmann, S., Hillenkamp, F.: Matrix-assisted infrared-laser (2.94 mm) desorption/ionization mass spectrometry of large biomolecules. Rapid Commun. Mass Spectrom 4, 293–296 (1990)

    Article  CAS  Google Scholar 

  6. Overberg, A., Karas, M., Hillenkamp, F.: Matrix-assisted laser desorption of large biomolecules with a TEA-CO2-Laser. Rapid Commun. Mass Spectrom. 5, 128–131 (1991)

    Article  CAS  Google Scholar 

  7. Menzel, C., Dreisewerd, K., Berkenkamp, S., Hillenkamp, F.: The role of the laser pulse duration in infrared matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 975–984 (2002)

    Article  CAS  Google Scholar 

  8. McEwen, C.N., Trimpin, S.: An alternative ionization paradigm for atmospheric pressure mass spectrometry: Flying elephants from Trojan horses. Int. J. Mass Spectrom. 300, 167–172 (2011)

    Article  CAS  Google Scholar 

  9. Zilch, L.W., Maze, J.T., Smith, J.W., Ewing, G.E., Jarrold, M.F.: Charge separation in the aerodynamic breakup of micrometer-sized water droplets. J. Phys. Chem. A 112, 13352–13363 (2008)

    Article  CAS  Google Scholar 

  10. Musapelo, T., Murray, K.K.: Particle formation in ambient MALDI Plumes. Anal. Chem 83, 6601–6608 (2011)

    Article  CAS  Google Scholar 

  11. Alves, S., Kalberer, M., Zenobi, R.: Direct detection of particles formed by laser ablation of matrices during matrix-assisted laser desorption/ionization. Rapid. Commun. Mass. Spectrom. 17, 2034–2038 (2003)

    Article  CAS  Google Scholar 

  12. Jackson, S.N., Mishra, S., Murray, K.K.: Characterization of coarse particles formed by laser ablation of MALDI matrixes. J. Phys. Chem. B 107, 13106–13110 (2003)

    Article  CAS  Google Scholar 

  13. Kim, J.-K., Jackson, S.N., Murray, K.K.: Matrix-assisted laser desorption/ionization mass spectrometry of collected bioaerosol particles. Rapid Commun. Mass Spectrom. 19, 1725–1729 (2005)

    Article  CAS  Google Scholar 

  14. Fan, X., Little, M.W., Murray, K.K.: Infrared laser wavelength dependence of particles ablated from glycerol. Appl. Surf. Sci 255, 1699–1704 (2008)

    Article  CAS  Google Scholar 

  15. Li, J., Inutan, E.D., Wang, B., Lietz, C.B., Green, D.R., Manly, C.D., Richards, A.L., Marshall, D.D., Lingenfelter, S., Ren, Y., Trimpin, S.: Matrix assisted ionization: New aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces. J. Am. Soc. Mass Spectrom. 23, 1625–1643 (2012)

    Article  CAS  Google Scholar 

  16. Zhigilei, L.V., Yingling, Y.G., Itina, T.E., Schoolcraft, T.A., Garrison, B.J.: Molecular dynamics simulations of matrix-assisted laser desorption-connections to experiment. Int. J. Mass. Spectrom. 226, 85–106 (2003)

    Article  CAS  Google Scholar 

  17. Miotello, A., Kelly, R.: Laser-induced phase explosion: New physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A 69, S67–S73 (1999)

    CAS  Google Scholar 

  18. Zhigilei, L.V., Garrison, B.J.: Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281–1298 (2000)

    Article  CAS  Google Scholar 

  19. Apitz, I., Vogel, A.: Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A 81, 329–338 (2005)

    Article  CAS  Google Scholar 

  20. Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003)

    Article  CAS  Google Scholar 

  21. Knochenmuss, R., Zhigilei, L.V.: Molecular dynamics model of ultraviolet matrix-assisted laser desorption/ionization including ionization processes. J. Phys. Chem. B 109, 22947–22957 (2005)

    Article  CAS  Google Scholar 

  22. Leisner, A., Rohlfing, A., Rohling, U., Dreisewerd, K., Hillenkamp, F.: Time-resolved imaging of the plume dynamics in infrared matrix-assisted laser desorption/ionization with a glycerol matrix. J. Phys. Chem. B 109, 11661–11666 (2005)

    Article  CAS  Google Scholar 

  23. Zhigilei, L.V., Ivanov, D.S., Leveugle, E., Sadigh, B., Bringa, E.M.: Computer simulations of laser ablation from simple metals to complex metallic alloys. Proceedings of SPIE 5448, 505–519 (2004)

    Article  CAS  Google Scholar 

  24. Nikolayev, V.S., Beysens, D.A.: Boiling crisis and non-equilibrium drying transition. Europhys. Lett. 47, 345–351 (1999)

    Article  CAS  Google Scholar 

  25. Bulgakova, N.M., Bulgakov, A.V.: Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion. Appl. Phys. A 73, 199–208 (2001)

    Article  CAS  Google Scholar 

  26. Galicia, M., Vertes, A., Callahan, J.: Atmospheric pressure matrix-assisted laser desorption/ionization in transmission geometry. Anal. Chem. 74, 1891–1895 (2002)

    Article  CAS  Google Scholar 

  27. Trimpin, S., Wang, B., Inutan, E.D., Li, J., Lietz, C.B., Harron, A., Pagnotti, V.S., Sardelis, D., McEwen, C.N.: A mechanism for ionization of nonvolatile compounds in mass spectrometry: Considerations from MALDI and inlet ionization. J. Am. Soc. Mass Spectrom. 23, 1644–1660 (2012)

    Article  CAS  Google Scholar 

  28. Frankevich, V., Nieckarz, R.J., Sagulenko, P.N., Barylyuk, K., Zenobi, R., Levitsky, L.I., Agapov, A.Y., Perlova, T.Y., Gorshkov, M.V., Tarasova, I.A.: Probing the mechanisms of ambient ionization by laser-induced fluorescence spectroscopy. Rapid Commun. Mass Spectrom. 26, 1567–1572 (2012)

    Article  CAS  Google Scholar 

  29. Costa, A.B.; Cooks, R.G.: Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem. Commun. 3915–3917. doi:10.1039/b710511h (2007)

  30. Costa, A.B., Cooks, R.G.: Simulated splashes: Elucidating the mechanism of desorption electrospray ionization mass spectrometry. Chem. Phys. Lett. 464, 1–8 (2008)

    Article  CAS  Google Scholar 

  31. Huang, F., Murray, K.K.: Finite element simulation of infrared laser ablation for mass spectrometry. Rapid Commun. Mass Spectrom. 26, 2145–2150 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kermit K. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musapelo, T., Murray, K.K. Particle Production in Reflection and Transmission Mode Laser Ablation: Implications for Laserspray Ionization. J. Am. Soc. Mass Spectrom. 24, 1108–1115 (2013). https://doi.org/10.1007/s13361-013-0631-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0631-z

Key words

Navigation