Skip to main content

Advertisement

Log in

Different effects of climate change on the population dynamics of insects

  • Review
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Climate change affects the pattern of population dynamics of insects in different ways. Global warming not only leads to greater over-winter survival, earlier appearance in spring, an increase in the number of generations in a year, lengthening of the reproductive season, etc., but also affects their biotic associations as a result of changes in interspecific interactions. Changes in the density of insects in response to unusually hot summers provide us with useful indications of the potential effects of global warming. Different insect guilds respond differently to hot summers, which sometimes result in an increase in density and sometimes a decrease. These effects may occur immediately or be delayed by 1 or 2 years. As long as the regime remains unchanged, the affected population can recover sooner or later. Even a single-year change in climate, however, if it allows predators to outbreak, may be strong enough to cause a regime shift. Most insects are susceptible to heat stress between 28 and 32 °C, global warming could have a more profound impact on the population dynamics and biodiversity of arthropods than has previously been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745

    Article  CAS  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Smymioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222

    Article  Google Scholar 

  • Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? Biol Rev 83:335–339

    Article  Google Scholar 

  • Bradshaw WE, Holzapfel CM (2008) Genetic response to rapid climate change: it’s seasonal timing that matters. Mol Ecol 17:157–166

    Article  PubMed  CAS  Google Scholar 

  • Cammell ME, Knight JD (1992) Effects of climatic change on the population dynamics of crop pests. Adv Ecol Res 22:117–162

    Article  Google Scholar 

  • Cannon RC (1998) The implications of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Glob Change Biol 4:785–796

    Article  Google Scholar 

  • Coviella CE, Trumble JT (1998) Effects of elevated atmospheric carbon dioxide on insect–plant interactions. Conserv Biol 13:700–712

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 105:6668–6672

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich PR (1989) Carbon dioxide and the human predicament: an overview. In: Cairns J Jr, Zweifel PF (eds) On global warming. Proc first presidential symposium on world issues. Virginia Polytechnic Institute and State University, Blacksburg, pp 6–11

    Google Scholar 

  • Ehrlich PR, Murphy DD, Singer MC, Sherwood CB, White RR, Brown IL (1980) Extinction, reduction, stability and increase: the responses of checkerspot butterfly (Euphydryas) populations on the California drought. Oecologia 46:101–105

    Article  Google Scholar 

  • Fukui J (2010) Conservation of an endangered dragon fly, Libellula angelina at the Okegaya-numa in Iwata city, Shizuoka. In: Ishii M (ed) Conservation of endangered insect species in Japan. Hokuryukan Publishing Co, Tokyo, pp 135–142 (in Japanese)

    Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  PubMed  CAS  Google Scholar 

  • Harrington R, Stork NE (1995) Insects in a changing environment. Academic Press, London

    Google Scholar 

  • Harrington R, Woiwod I, Sparks T (1999) Climate change and trophic interactions. TREE 14:146–150

    PubMed  Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:223–240

    Article  Google Scholar 

  • Heong KL, Song YH, Pimsamarn S, Zhang R, Bae SD (1995) Global warming and rice arthropod communities. In: Peng S et al (eds) Climate change and rice. Springer, Berlin, pp 326–335

    Chapter  Google Scholar 

  • Hill JK, Hannah M, Griffiths M, Thomas CD (2011) Climate change and evolutionary adaptations at species’ range margins. Annu Rev Entomol 56:143–159

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann AA (2010) Physiological climatic limits in Drosophila; patterns and implications. J Exp Biol 21:3870–3888

    Google Scholar 

  • Holling CS (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ikemoto T, Kurahashi I, Shi PJ (2012) Confidence interval of intrinsic optimum temperature estimated using thermodynamics SSI model. Insect Sci. doi:10.1111/j.1744-7917.2012.01525.x)

  • IPCC (2001) Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Japan FAO Association (1997) Forests and forestry in Japan, 2nd edn. Japan FAO Association, Tokyo

    Google Scholar 

  • Kareiva PM, Kingsolver JG, Huey RB (eds) (1993) Biotic interactions and global change. Sinauer Associates, Sunderland

    Google Scholar 

  • Kiritani K (1965) Factors determining the distribution of the two related stink bugs, Nezara viridula L. and N. antennata Scott. In: Freeman P (ed) Proceedings of the XII International Congress of Entomology London 1964. Roy Entomol Soc, London, p 423

  • Kiritani K (1971) Distribution and abundance of the southern green stink bug, Nezara viridula. In: Proc Symp Rice Insects. Tropical Agricultural Research Center, MAF, Tokyo, pp 235–248

  • Kiritani K (1988) Effects of climate change on the insect fauna. Meteorol Res Rept 162:137–141 (in Japanese)

    Google Scholar 

  • Kiritani K (1991) Potential impacts of global warming on insects. Insectarium 28:212–225 (in Japanese)

    Google Scholar 

  • Kiritani K (1997) The low development threshold temperature and the thermal constant in insects, mites and nematodes in Japan. Misc Pub Natl Inst Agro-Environ Sci 21:1–72 (In Japanese with English summary)

    Google Scholar 

  • Kiritani K (1999) Shift of IPM strategy for rice under global warming in temperate areas. In: Zhang R, Gu D, Zhang W, Zhou C, Pang Y (eds) Integrated pest management in rice-based ecosystem. Editorial Dept Jour Zhongshan Univ, China, pp 234–244

    Google Scholar 

  • Kiritani K (2001) Insects and weather. Seizandow-Shoten, Tokyo (In Japanese)

    Google Scholar 

  • Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12

    Article  Google Scholar 

  • Kiritani K (2007) The impact of global warming and land-use change on the pest status of rice and fruit bugs (Heteroptera) in Japan. Glob Change Biol 13:1586–1595

    Article  Google Scholar 

  • Kiritani K (2011) Impacts of global warming on Nezara viridula and its native congeneric species. J Asia-Pac Entomol 14:221–226

    Article  Google Scholar 

  • Kiritani K (2012a) The low development threshold temperature and the thermal constant in insects and mites in Japan (2nd edition). Bull Nat Inst Agro-Environ Sci 31:1–74 (http://www.niaes.affrc.go.jp/sinfo/publish/bulletin/niaes31-1.pdf) (in Japanese with English summary)

  • Kiritani K (2012b) Integrated biodiversity management (IBM) and neutral arthropods (Tada-no-mushi). Tree For Health 16:46–60 (in Japanese)

    Google Scholar 

  • Kiritani K (2012c) Studies of the population dynamics of Trypoxylus dichotomus (Coleoptera; Scarabaeidae), a bioindicator species of the Satoyama landscape, to determine its baseline reference density. Jpn J Entomol (NS) 15:1–11 (in Japanese with English summary)

    Google Scholar 

  • Kiritani K, Hokyo N (1970) Ecological studies on the population dynamics of the southern green stink bug. Shitei-shiken pub no. 9, Special project for the biology and control of heteropteran bugs. Secretariat of Agriculture, Forestry and Fisheries Research Council, Tokyo (in Japanese with English summary)

  • Kiritani K, Yukawa J (eds) (2010) Effects of global warming on insects. Zenkoku Noson Kyoiku Kyokai Publishing Co Ltd, Tokyo (in Japanese)

    Google Scholar 

  • Kiritani K, Hokyo N, Yukawa J (1963) Co-existence of the two related stink bugs, Nezara viridula and N. antennata under natural conditions. Res Popul Ecol 5:11–22

    Article  Google Scholar 

  • Kiritani K, Hokyo N, Iwao S (1966a) Population behavior of the southern green stink bug, Nezara viridula, with special reference to the developmental stages of early planted paddy. Res Popul Ecol 8:133–146

    Article  Google Scholar 

  • Kiritani K, Hokyo N, Kimura K (1966b) Factors affecting the winter mortality in the southern green stink bug, Nezara viridula L. Annual Soc Entomol France Nouv Sér (Sunn Pest Mem, 9). 2:199–207

  • Kocsis M, Hufnagel L (2011) Impacts of climate change on Lepidoptera species and communities. Appl Ecol Environ Res 9:43–72

    Google Scholar 

  • Ladányi M, Horváth L (2010) A review of the potential climate change impact on insect populations: general and agricultural aspects. Appl Ecol Environ Res 8:143–152

    Google Scholar 

  • Lincoln DN, Sionit E, Strain BR (1984) Growth and feeding response of Pseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environ Entomol 13:1527–1530

    CAS  Google Scholar 

  • McCarty J (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Article  Google Scholar 

  • Morimoto N, Imura O, Kiura T (1998) Potential effects of global warming on the occurrence of Japanese pest insects. Appl Entomol Zool 33:147–155

    Google Scholar 

  • Musolin DL, Tougou D, Fujisaki K (2009) Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Glob Change Biol 16:73–87

    Article  Google Scholar 

  • Nakasuji F, Yamanaka H, Kiritani K (1973) The disturbing effect of micryphantid spiders on the larval aggregation of the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Kontyu 41:220–227

    Google Scholar 

  • National Academy of Sciences (2008) Ecological impacts of climate change (free executive summary). http://www.nap.edu/catalog/12491.html

  • Noda T (1984) Short day photoperiod accelerates the oviposition in the Oriental green stink bug, Nezara antennata Scott (Heteroptera: Pentatomidae). Appl Entomol Zool 19:119–120

    Google Scholar 

  • Olfert OR, Weiss M, Kriticos D (2011) Application of general circulation models to assess the potential impact of climate change on potential distribution and relative abundance of Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) in North America. Psyche 2011:Article ID 578327 (p 4)

  • Parmesan C (1996) Climate change and species’ range. Nature 382:765–766

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric For Meteorol 57:221–240

    Article  Google Scholar 

  • Scriber JM, Slansky F (1981) The nutritional ecology of immature insects. Annu Rev Entomol 26:183–211

    Article  Google Scholar 

  • Sionit N (1983) Response of soybean to two levels of mineral nutrition in CO2 enriched atmosphere. Crop Sci 23:329–333

    Article  CAS  Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13:1823–1842

    Article  Google Scholar 

  • Sutherst RW (2000) Climate change and invasive species—a conceptual framework. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, DC, pp 211–240

    Google Scholar 

  • Tada A, Kikuchi Y, Hosokawa T, Musolin DL, Fujisaki K, Fukatsu T (2011) Obligate association with gut bacterial symbiont in Japanese populations of the southern green stinkbug, Nezara viridula (Heteroptera: Pentatomidae). Appl Entomol Zool 46:483–488

    Article  Google Scholar 

  • Tobin PC, Nagarkatti S, Loeb G, Saunders MC (2008) Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Glob Change Biol 14:951–957

    Article  Google Scholar 

  • Tougou D, Musolin DL, Fujisaki K (2009) Some like it hot! Rapid climate change promotes changes in distribution ranges of Nezara viridula and Nezara antennata in Japan. Entomol Exp Appl 130:249–258

    Article  Google Scholar 

  • Umeya K (1976) Damage caused by the outbreaks of fruit tree infesting stink bugs in 1975. Syokubutu-Boeki 30:133–141 (In Japanese)

    Google Scholar 

  • Walther GR, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wang XG, Johnson MW, Daane KM, Nadel H (2009) High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Environ Entomol 38:1496–1504

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Kiritani K, Matsuhira K, Fukuda K (2001) The influence of unusual hot weather on the occurrence of several arthropod crop pests. Jpn J Appl Entomol Zool 45:1–7 (in Japanese with English summary)

    Article  Google Scholar 

  • Yamamura K (2004) Influence of global warming on insect pests. In: Proc int workshop prediction of food production variation in East Asia under global warming, Mar 17–19, 2004, Tsukuba, Japan, pp 27–29

  • Yamamura K, Kiritani K (1998) A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl Entomol Zool 33:289–298

    Google Scholar 

  • Yamamura K, Yokozawa M (2002) Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus, under global warming. Appl Entomol Zool 37:181–190

    Article  Google Scholar 

  • Yamamura K,Yokozawa M, Nishimori M, Ueda Y, Yokosuka T (2006) How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Popul Ecol 48:31–48

    Google Scholar 

  • Yukawa J, Kiritani K, Gyoutoku N, Uechi N, Yamaguchi D, Kamitani S (2007) Distribution range shift of two allied species, Nezara viridula and N. antennata (Hemiptera: Pentatomidae), in Japan, possibly due to global warming. Appl Entomol Zool 42:205–215

    Article  Google Scholar 

  • Yukawa J, Kiritani K, Kawasawa T, Higashiura Y, Sawamura N, Nakada K, Gyotoku N, Tanaka A, Kamitani S, Matsuo K, Yamauchi S, Takematsu Y (2009) Northward range expansion by Nezara viridula (Hemiptera: Pentatomidae) in Shikoku and Chugoku Districts, Japan, possibly due to global warming. Appl Entomol Zool 44:429–437

    Article  Google Scholar 

  • Zani P, Swanson ET, Corbin D, Cohnstaedt LW, Agotsch MD, Bradshaw WE, Holzapfel CM (2005) Geographic variation in tolerance of transient thermal stress in the mosquito Wyeomyia smithii. Ecology 86:1206–1211

    Article  Google Scholar 

Download references

Acknowledgments

I thank Professor J. Yukawa, Kyushu University, and Professor D. Andow, Minnesota University, for their valuable comments on an earlier version of this manuscript. I acknowledge Drs S. Miyai, T. Kidokoro, and N. Morimoto for providing me with information. I also thank two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keizi Kiritani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiritani, K. Different effects of climate change on the population dynamics of insects. Appl Entomol Zool 48, 97–104 (2013). https://doi.org/10.1007/s13355-012-0158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-012-0158-y

Keywords

Navigation