Skip to main content
Log in

Genetic isolation of the sorghum plant bug Stenotus rubrovittatus (Hemiptera: Miridae) in Fukushima and Ibaraki prefectures

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Population subdivision and connectivity within a distribution range are important factors to consider in the development of a management strategy to control widespread pest species. Damage by sorghum plant bug, Stenotus rubrovittatus (Matsumura), has rapidly spread across Japan over the last 10 years. To characterize the fine-scale population structure of this bug and investigate the boundaries of genetic isolation, we analyzed the population structure of 21 local populations within a 72 km × 200 km area around Fukushima and Ibaraki prefectures. Polymorphism of six microsatellite markers implied that S. rubrovittatus in the study area was divided into northern and southern genetic groups segregated by the 37.3°N line of latitude. The boundary between the two groups, defined by microsatellites, was almost consistent with the range limit of one mitochondrial lineage of the same species. Our result indicated that isolation between these two genetic groups was mediated by historical and ecological origins, and was maintained during the last 10 years when there were rapid outbreaks of this species on rice within the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Brévault T, Carletto J, Linderme D, Vanlerberghe-Masutti F (2008) Genetic diversity of the cotton aphid Aphis gossypii in the unstable environment of a cotton growing area. Agric For Entomol 10:215–223

    Article  Google Scholar 

  • Carletto J, Lombaert E, Chavigny P, Brevault T, Lapchin L, Vanlerberghe-Masutti F (2009) Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol Ecol 18:2198–2212

    Article  PubMed  CAS  Google Scholar 

  • Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    PubMed  CAS  Google Scholar 

  • Corander J, Sirrén J, Arjas E (2008) Bayesian spatial modeling of genetic population structure. Comput Stat 23:111–129

    Article  Google Scholar 

  • Crochet PA (2000) Genetic structure of avian populations—allozymes revisited. Mol Ecol 9:1463–1469

    Google Scholar 

  • DeSalle R, Giddings LV (1986) Discordance of nuclear and mitochondrial DNA phylogenies in Hawaiian Drosophila. Proc Natl Acad Sci USA 83:6902–6906

    Article  PubMed  CAS  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Microsatellite analyser (MSA), a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2007) Arlequin (Version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  Google Scholar 

  • Felsenstein J (1993) PHYLIP: Phylogeny Inference Package, version 3.5c. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Forister ML, Fordyce JA, Shapiro AM (2004) Geological barriers and restricted gene flow in the holarctic skipper Hesperia comma (Hesperiidae). Mol Ecol 13:3489–3499

    Article  PubMed  CAS  Google Scholar 

  • Goto J, Ito Y, Shishido M (2000) Relationship between barn grass in rice paddies and spotted rice caused by Stenotus rubrovittatus (Matsumura). Annu Rep Soc Plant Prot North Jpn 51:162–164

    Google Scholar 

  • Hayashi H, Nakazawa K (1988) Studies on the bionomics and control of the sorghum plant bug, Stenotus rubrovittatus Matsumura (Hemiptera: Miridae). 1. Habitat and seasonal prevalence in Hiroshima Prefecture. Bull Hiroshima Agric Exp Stn 51:45–53

    Google Scholar 

  • Higuchi H (2010) Ecology and management of rice bugs causing pecky rice. Jpn J Appl Entomol Zool 54:171–188

    Article  Google Scholar 

  • Hutchinson DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Iimura S, Saitoh Y, Gotoh J (2004) Seasonal occurrence of Sorghum plant bug, Stenotus rubrovittatus Matsumura (Hemiptera: Miridae), in Iwate prefecture. Annu Rep Soc Plant Prot North Jpn 55:117–121

    Google Scholar 

  • Japanese Meteorology Agency (2010) http://www.jma.go.jp/jma/menu/report.html

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kikuchi A, Kannno H, Kimura T, Goto J, Ono T, Niiyama T, Takita M, Matsuki N, Ooba A, Horisue N (2004) A survey on the occurrence of rice-ear bugs and their damage in the Tohoku region from 1999 to 2002. Bull Natl Agric Res Cent Tohoku Reg 102:101–180

    Google Scholar 

  • Kim K, Cano-Rios SP, Sappington TW (2006) Using genetic markers and population assignment techniques to infer origin of boll weevils (Coleoptera: Curculionidae) unexpectedly captured near an eradication zone in Mexico. Environ Entomol 35:813–826

    Article  Google Scholar 

  • Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12

    Article  Google Scholar 

  • Kobayashi T (2008) Development of polymorphic microsatellite markers for the sorghum plant bug, Stenotus rubrovittatus (Heteroptera: Miridae). Mol Ecol Res 8:690–691

    Article  CAS  Google Scholar 

  • Kobayashi T, Sakurai T, Sakakibara M, Watanabe T (2011) Multiple origins of outbreak populations of a native insect pest in an agro-ecosystem. Bull Entomol Res. doi:10.1017/S0007485310000490

  • Meng XF, Shi M, Chen XX (2008) Population genetic structure of Chilo suppressalis (Walker) (Lepidoptera: Crambidae): strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Mol Ecol 17:2880–2897

    Article  PubMed  CAS  Google Scholar 

  • Mopper S (1996) Adaptive genetic structure in phytophagous insect populations. Tree 11:235–237

    PubMed  CAS  Google Scholar 

  • Nagasawa A (2007) Gramineous plants used as oviposition sites by pecky rice bugs, Trigonotylus caelestialium (Kirkaldy) and Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae). Proc Assoc Plant Prot Hokuriku 56:29–31

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Google Scholar 

  • Novak SJ (2007) The role of evolution in the invasion process. Proc Natl Acad Sci USA 104:3671–3672

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Porretta D, Canestrelli D, Bellini R, Celli G, Urbanelli S (2007) Improving insect pest management through population genetic data: a case study of the mosquito Ochlerotatus caspius (Pallas). J Appl Ecol 44:682–691

    Article  CAS  Google Scholar 

  • R Development Core Team (2005) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rassmann K, Tautz D, Trillmich F, Gliddon C (1997) The microevolution of the Galapagos marine iguana Amblyrhynchus cristatus assessed by nuclear and mitochondrial genetic analyses. Mol Ecol 6:437–452

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Salvato P, Battisti A, Concato S, Masutti L, Patarnello T, Zane L (2002) Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampawilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Mol Ecol 11:2435–2444

    Google Scholar 

  • Shigehisa M (2004) Estimation of annual generations of Sorghum plant bug, Stenotus rubroivattatus (Matsumura) (Hemiptera: Miridae) in Shiga Prefecture. Ann Rep Kansai Plant Prot 46:77–78

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Tsunoda I (1985) Butterflies of Fukushima prefecture. Rekisi-shunshuu sha

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Watanabe T, Higuchi H (2006) Recent occurrence and problem of rice bugs. Plant Prot 60:201–203

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yawson AE, Weetman D, Wilson MD, Donnelly MJ (2007) Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambiae s.s. in Ghana. Genetics 175:751–761

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Frommer M, Robson MK, Meats AW, Shearman DC, Sved JA (2001) Microsatellite analysis of the Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae) indicates spatial structuring: implications for population control. Bull Entomol Res 91:139–147

    PubMed  CAS  Google Scholar 

  • Zakharov EV, Hellmann JJ (2008) Genetic differentiation across a latitudinal gradient in two co-occurring butterfly species: revealing population differences in a context of climate change. Mol Ecol 17:189–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Y. Otani, K. Yoneyama, and T. Watanabe for collecting samples. We are grateful to M. Sasaki for her technical assistance. The research was funded by the Ministry of Agriculture, Forestry and Fisheries, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Matsuki, N. & Yokosuka, T. Genetic isolation of the sorghum plant bug Stenotus rubrovittatus (Hemiptera: Miridae) in Fukushima and Ibaraki prefectures. Appl Entomol Zool 46, 343–351 (2011). https://doi.org/10.1007/s13355-011-0042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-011-0042-1

Keywords

Navigation