Skip to main content

Advertisement

Log in

Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene

  • Animal Genetics ∙ Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules that down-regulate the expression of target genes in a sequence-dependent manner. Recent studies indicated that miRNAs are mechanistically involved in the regulation of the mammalian corpus luteum (CL). However, few studies have profiled the different miRNA expression patterns in bovine non-regressed and regressed CL. In this study, miRNA microarray was employed to investigate the different miRNA expression patterns in bovine CL. Among the 13 differentially expressed miRNAs, seven were preferentially expressed in non-regressed CL, while six miRNAs were more highly expressed in regressed CL. Real-time RT-PCR was used to validate the microarray results. Mir-378 miRNA, known to be associated with apoptosis, was 8.54-fold (P < 0.01) up-regulated in non-regressed CL, and the interferon gamma receptor 1 (IFNGR1) gene, which potentially plays a role in apoptosis of the luteal cell, was predicted to be the target of mir-378. The results of real-time RT-PCR of mir-378 and western blot analysis of the IFNGR1 protein at different stages of CL development showed that mir-378 decreased the expression of IFNGR1 protein but not IFNGR1 mRNA. Taken together, our data support a direct role for miRNA in apoptosis of bovine CL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguet M, Dembic Z, Merlin G (1988) Molecular cloning and expression of the human interferon-gamma receptor. Cell 55:273–280

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bentwich IA, Avniel Y, Karov R, Aharonov S, Gilad O, Barad A et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  • Buchan JR, Parker R (2007) Molecular biology. The two faces of miRNA. Science 318:1877–1878

    Article  PubMed  CAS  Google Scholar 

  • Carletti MZ, Christenson LK (2009) MicroRNA in the ovary and female reproductive tract. J Anim Sci 87:E29–38

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Dennis C (2002) Small RNAs: the genome's guiding hand? Nature 420:732

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Chen H, Davis-Smyth T, Gerber HP, Nguyen TN, Peers D et al. (1998) Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat Med 4:336–340

    Article  PubMed  CAS  Google Scholar 

  • Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105:14879–14884

    Article  PubMed  CAS  Google Scholar 

  • Garofalo M, Condorelli GL, Croce CM, Condorelli G (2010) MicroRNAs as regulators of death receptors signaling. Cell Death Diffe 17:200–208

    Article  CAS  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–144

    Article  PubMed  CAS  Google Scholar 

  • Hansel W, Blair RM (1996) Bovine corpus luteum: a historic overview and implications for future research. Theriogenology 45:1267–1294

    Article  PubMed  CAS  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  • Hossain MM, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E et al. (2009) Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics 10:443

    Article  PubMed  Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Deng Z, Wang C, Yang B (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104:20350–20355

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Milvae RA, Hinckley ST, Carlson JC (1996) Luteotropic and luteolytic mechanisms in the bovine corpus luteum. Theriogenology 45:1327–1349

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto Y, Skarzynski DJ, Okuda K (2000) Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol Reprod 62:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Niwa R, Slack FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17:145–150

    Article  PubMed  CAS  Google Scholar 

  • Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S et al. (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118:1944–1954

    Article  PubMed  CAS  Google Scholar 

  • Pate JL (1996) Intercellular communication in the bovine corpus luteum. Theriogenology 45:1381–1397

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi H, Yokomizo Y, Okuda K (2002) Fas-Fas ligand system mediates luteal cell death in bovine corpus luteum. Biol Reprod 66:754–759

    Article  PubMed  CAS  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K et al. (2009) Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 76:665–677

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation (Grant number: 30972100), the earmarked fund for Modern Agro-industry Technology Research System (Grant number: CARS-38), and the Technology development program of Jilin province (Grant Number 20090237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, T., Jiang, H., Gao, Y. et al. Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. J Appl Genetics 52, 481–486 (2011). https://doi.org/10.1007/s13353-011-0055-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-011-0055-z

Keywords

Navigation