Skip to main content

Advertisement

Log in

MicroRNA Expression is Altered in Granulosa Cells of Ovarian Hyperresponders

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Controlled ovarian stimulation plays an integral role in assisted reproduction technology, but individual patients have different responses to exogenous gonadotropins. In order to determine whether microRNAs (miRNAs) have a regulatory role in ovarian response, we profiled the expression of microRNAs in isolated ovarian granulosa cells collected from ovarian hyperresponders and normal responders using microarrays and validated the expression of selected miRNAs using quantitative polymerase chain reaction (PCR). There were 81 miRNAs differentially expressed between the 2 groups, with 45 increased and 36 decreased in the high response group. Bioinformatics analysis of these altered miRNAs and their target genes revealed some significantly enriched pathways, including regulation of the cell cycle, transcription, cell proliferation, and gonadotrophin releasing hormone signaling pathway. The expression of hsa-miR-513a-5p, hsa-miR-27b-3p, hsa-miR-19b-3p, hsa-miR-3201, hsa-miR-423-5p, hsa-miR-193b-5p, and hsa-miR-202-3p was validated by real-time PCR. Hsa-miR-423-5p, predicted to target anti-Mullerian hormone, cytochrome P450, family 19, subfamily A, polypeptide 1, methylenetetrahydrofolate reductase, progesterone receptor, and follicle stimulating hormone, β-polypeptide was found to have significantly decreased expression in the hyperresponders (P = .023). Hsa-miR-193b-5p also showed a tendency to be significantly decreased in the hyperresponders (P = .093). In conclusion, our findings provide evidence for altered miRNA expression in granulosa cells of women with ovarian hyperresponse, suggesting a role of miRNAs in regulating ovarian response to gonadotropins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Practice Committee of American Society for Reproductive Medicine. Ovarian hyperstimulation syndrome. Fertil Steril. 2008;90(5 suppl):s188–s193.

    Google Scholar 

  2. Kligman I, Rosenwaks Z. Differentiating clinical profiles: predicting good responders, poor responders, and hyperresponders. Fertil Steril. 2001;76(6):1185–1190.

    CAS  PubMed  Google Scholar 

  3. La Marca A, Sunkara SK. Individualization of controlled ovarian stimulation in IVF using ovarian reserve markers: from theory to practice. Hum Reprod Update. 2014;20(1):124–140.

    PubMed  Google Scholar 

  4. Vrontikis A, Chang PL, Kovacs P, Lindheim SR. Antral follice counts (AFC) predict ovarian response and pregnancy outcomes in oocyte donation cycles. J Assist Reprod Genet. 2010;27(7):383–389.

    PubMed  PubMed Central  Google Scholar 

  5. Hamdine O, Eijkemans MJ, Lentjes EW, et al. Ovarian response prediction in GnRH antagonist treatment for IVF using anti-Mullerian hormone. Hum Reprod. 2015;30(1):170–178.

    CAS  PubMed  Google Scholar 

  6. Sun B, Wang F, Sun J, Yu W, Sun Y. Basal serum testosterone levels correlate with ovarian response but do not predict pregnancy outcome in non-PCOS women undergoing IVF. J Assist Reprod Genet. 2014;31(7):829–835.

    PubMed  PubMed Central  Google Scholar 

  7. Dewailly D, Andersen CY, Balen A, et al. The physiology and clinical utility of anti-Mullerian hormone in women. Hum Reprod Update. 2014;20(3):370–385.

    PubMed  Google Scholar 

  8. O’Brien TJ, Kalmin MM, Harralson AF, et al. Association between the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) rs4073366 polymorphism and ovarian hyperstimulation syndrome during controlled ovarian hyperstimulation. Reprod Biol Endocrinol. 2013;11:71.

    PubMed  PubMed Central  Google Scholar 

  9. Altmae S, Hovatta O, Stavreus-Evers A, Salumets A. Genetic predictors of controlled ovarian hyperstimulation: where do we stand today?. Hum Reprod Update. 2011;17(6):813–828.

    CAS  PubMed  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.

    CAS  PubMed  Google Scholar 

  11. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–355.

    CAS  PubMed  Google Scholar 

  12. Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril. 2014;101(6):1524–1530.

    CAS  PubMed  Google Scholar 

  13. Dai A, Sun H, Fang T, et al. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 2013;587(15):2474–2482.

    CAS  PubMed  Google Scholar 

  14. Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011;152(10):3941–3951.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao G, Yin M, Lian J, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010;24(3):540–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sang Q, Yao Z, Wang H, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013;98(7):3068–3079.

    CAS  PubMed  Google Scholar 

  17. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010;223(1):49–56.

    CAS  PubMed  Google Scholar 

  18. Yang X, Zhou Y, Peng S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012;144(2):235–244.

    CAS  PubMed  Google Scholar 

  19. Assou S, Al-edani T, Haouzi D, et al. MicroRNAs: new candidates for the regulation of the human cumulus-oocyte complex. Hum Reprod. 2013;28(11):3038–3049.

    CAS  PubMed  Google Scholar 

  20. Liu HC, Tang Y, He Z, Rosenwaks Z. Dicer is a key player in oocyte maturation. J Assist Reprod Genet. 2010;27(9–10):571–580.

    PubMed  PubMed Central  Google Scholar 

  21. Popovic-Todorovic B, Loft A, Lindhard A, Bangsbøll S, Andersson AM, Andersen AN. A prospective study of predictive factors of ovarian response in ‘standard’ IVF/ICSI patients treated with recombinant FSH. A suggestion for a recombinant FSH dosage normogram. Hum Reprod. 2003;18(4):781–787.

    CAS  PubMed  Google Scholar 

  22. Riggs RM, Duran EH, Baker MW, et al. Assessment of ovarian reserve with anti-Mullerian hormone: a comparison of the predictive value of anti-Mullerian hormone, follicle-stimulating hormone, inhibin B, and age. Am J Obstet Gynecol. 2008;199(2):202.e1–e8.

    Google Scholar 

  23. Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod. 2011;26(7):1768–1774.

    PubMed  Google Scholar 

  24. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

    Google Scholar 

  25. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  27. Guastella E, Longo RA, Carmina E. Clinical and endocrine characteristics of the main polycystic ovary syndrome phenotypes. Fertil Steril. 2010;94(6):2197–2201.

    CAS  PubMed  Google Scholar 

  28. Peng C, Guo Z, Long X, Lu G. Progesterone levels on the hCG day and outcomes in vitro fertilization in women with polycystic ovary syndrome. J Assist Reprod Genet. 2012;29(7):603–607.

    PubMed  PubMed Central  Google Scholar 

  29. Buyalos RP, Lee CT. Polycystic ovary syndrome: pathophysiology and outcome with in vitro fertilization. Fertil Steril. 1996;65(1):1–10.

    CAS  PubMed  Google Scholar 

  30. Xu B, Zhang YW, Tong XH, Liu YS. Characterization of micro-RNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26–36.

    CAS  PubMed  Google Scholar 

  31. McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31(3):355–362.

    PubMed  PubMed Central  Google Scholar 

  32. Lin L, Du T, Huang J, Huang LL, Yang DZ. Identification of differentially expressed microRNAs in the ovary of polycystic ovary syndrome with hyperandrogenism and insulin resistance. Chin Med J (Engl). 2015;128(2):169–174.

    CAS  Google Scholar 

  33. Sorensen AE, Wissing ML, Salo S, Englund AL, Dalgaard LT. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS). Genes (Basel). 2014;5(3):684–708.

    Google Scholar 

  34. Sirotkin AV, Kisová G, Brenaut P, Ovcharenko D, Grossmann R, Mlyncek M. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH. Microrna. 2014;3(1):29–36.

    CAS  PubMed  Google Scholar 

  35. Karakaya C, Guzeloglu-Kayisli O, Uyar A, et al. Poor ovarian response in women undergoing in vitro fertilization is associated with altered microRNA expression in cumulus cells. Fertil Steril. 2015;103(6):1469–1476.e1–e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Wang X, Yang X, et al. miRNA423-5p regulates cell proliferation and invasion by targeting trefoil factor 1 in gastric cancer cells. Cancer Lett. 2014;347(1):98–104.

    CAS  PubMed  Google Scholar 

  37. Dong L, Deng J, Sun ZM, et al. Interference with the beta-catenin gene in gastric cancer induces changes to the miRNA expression profile. Tumour Biol. 2015;36(9):6973–6983.

    CAS  PubMed  Google Scholar 

  38. Goldraich LA, Martinelli NC, Matte U, et al. Transcoronary gradient of plasma microRNA 423-5p in heart failure: evidence of altered myocardial expression. Biomarkers. 2014;19(2):135–141.

    CAS  PubMed  Google Scholar 

  39. Nabialek E, Wanha W, Kula D, et al. Circulating microRNAs (miR-423-5p, miR-208a and miR-1) in acute myocardial infarction and stable coronary heart disease. Minerva Cardioangiol. 2013;61(6):627–637.

    CAS  PubMed  Google Scholar 

  40. Oliveira-Carvalho V, Da SM, Guimaraes GV, Bacal F, Bocchi EA. MicroRNAs: new players in heart failure. Mol Biol Rep. 2013;40(3):2663–2670.

    CAS  PubMed  Google Scholar 

  41. Lu X, Lu J. The significance of detection of serum miR-423-5p and miR-484 for diagnosis of colorectal cancer. Clin Lab. 2015;61(1–2):187–190.

    CAS  PubMed  Google Scholar 

  42. McDermott AM, Miller N, Wall D, et al. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One. 2014;9(1):e87032.

    PubMed  PubMed Central  Google Scholar 

  43. Ali S, Saleh H, Sethi S, Sarkar FH, Philip PA. MicroRNA profiling of diagnostic needle aspirates from patients with pancreatic cancer. Br J Cancer. 2012;107(8):1354–1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sui S, Jia Y, He B, et al. Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets. Asian-Australas J Anim Sci. 2014;27(12):1695–1704.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu B, Hua J, Zhang Y, et al. Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PLoS One. 2011;6(1):e16046.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 2006;3(11):881–886.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Li MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Batnasan, E., Zhang, Q. et al. MicroRNA Expression is Altered in Granulosa Cells of Ovarian Hyperresponders. Reprod. Sci. 23, 1001–1010 (2016). https://doi.org/10.1177/1933719115625849

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115625849

Keywords

Navigation