Skip to main content
Log in

Impacts of Soil Moisture on the Numerical Simulation of a Post-Landfall Storm

  • Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill (2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) model. It is found that increased soil moisture with SLAB scheme before storm’s landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arndt, D. S., J. B. Basara, R. A. McPherson, et al., 2009: Observations of the overland reintensification of tropical storm Erin (2007). Bull. Amer. Meteor. Soc, 90, 1079–1093, doi: 10.1175/2009BAMS2644.1.

    Article  Google Scholar 

  • Beljaars, A. C. M., P. Viterbo, M. J. Miller, et al., 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362–383, doi: 101175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.

    Article  Google Scholar 

  • Betts, A. K., J. H. Ball, A. Beljaars, et al., 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res. Atmos., 101, 7209–7225, doi: 10.1029/95JD02135.

    Article  Google Scholar 

  • Bozeman, M. L., D. Niyogi, S. Gopalakrishnan, et al., 2012: An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008). Nat. Hazards, 63, 1543–1571, doi: 10.1007/s110 69-011-9841-5.

    Article  Google Scholar 

  • Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961, doi: 10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    Article  Google Scholar 

  • Breuer, H., F. Ács, B. Laza, et al., 2012: Sensitivity of MM5-sim-ulated planetary boundary layer height to soil dataset: comparison of soil and atmospheric effects. Theor. Appl. Clima-tol, 109, 577–590, doi: 10.1007/s00704-012-0597-y.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585, doi: 10.1175/1520-0493 (2001)129<0569:CAALSH>2.0.CO;2.

    Article  Google Scholar 

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. Oceans, 3, 1889–1903, doi: 10.1029/JC083iC04p01889.

    Article  Google Scholar 

  • Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34 765-776, doi: 10.1029/97WR03499.

  • Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 3863–3872, doi: 10.1175/2008 MWR2409.1.

    Article  Google Scholar 

  • Evans, C., R. S. Schumacher, and T. J. Jr. Galarneau, 2011: Sensitivity in the overland reintensification of Tropical Cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 3848–3870, doi: 10.1175/2011MWR3593.1.

    Article  Google Scholar 

  • Ferrier, B. S., Y. Jin, Y. Lin, et al., 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction. American Meteorological Society, San Antonio, TX.

    Google Scholar 

  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeorol., 4, 552–569, doi: 10.11 75/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    Article  Google Scholar 

  • Gopalakrishnan, S. G., F. Jr. Marks, X. J. Zhang, et al., 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 1762–1784, doi: 10.1175/2010MWR3535.1.

    Article  Google Scholar 

  • Gopalakrishnan, S. G., F. Jr. Marks, J. A. Zhang, et al, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524–541, doi: 101175/JAS-D-11-0340.1.

    Article  Google Scholar 

  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546–564, doi: 10.1175/1520-0442(2001)014<0546:ACOTET> 2.0.CO;2.

    Article  Google Scholar 

  • Horváth, Á., F. Ács, and H. Breuer, 2009: On the relationship between soil, vegetation and severe convective storms: Hungarian case studies. Atmos. Res., 93, 66–81, doi: 10.1016/j.at-mosres.2008.10.007.

    Article  Google Scholar 

  • Hou, D. C., M. Charles, Y. Luo, et al, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydro-meteorol., 15, 2542–2557, doi: 10.1175/JHM-D-11-0140.1.

    Google Scholar 

  • Janjic, Z. I., R. Gall, and M. E. Pyle, 2010: Scientific documentation for the NMM solver. NCAR Tech. Note NCAR/TN-4771STR, NCAR, 53 pp, doi: 10.5065/D6MW2F3Z.

    Google Scholar 

  • Jones, S. C., P. A. Harr, J. Abraham, et al., 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 1052–1092, doi: 1011751520-04342003)018<1052TETO TC>2.0.CO;2.

    Article  Google Scholar 

  • Kishtawal, C. M., D. Niyogi, A. Kumar, et al, 2012: Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Nat. Hazards, 63, 1527–1542, doi: 10.1007/s11069-011-0015-2.

    Article  Google Scholar 

  • Koster, R. D., Z. C. Guo, R. Q. Yang, et al., 2009: On the nature of soil moisture in land surface models. J. Climate, 22 4322–4335, doi: 10.1175/2009JCLI2832.1.

    Article  Google Scholar 

  • Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci, 31, 893–919, doi: 10.1175/1520-0469 (1974)031<0893:SOATCD>2.0.CO;2.

    Article  Google Scholar 

  • Lanicci, J. M., T. N. Carlson, and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea. Rev., 115, 2660–2673, doi: 10.1175/1520-0493(1987)115<2660:SOTGPS>2.0.CO;2.

    Article  Google Scholar 

  • Lin, L-F., and Z. Pu, 2018: Characteristics of Background Error Covariance of Soil Moisture and Atmospheric States in Strongly Coupled Land-Atmosphere Data Assimilation. J Appl. Meteorol. Climatol, 57, 2507–2529.

    Article  Google Scholar 

  • Pan, H.-L., and J.-S. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note 409. U.S. National Center for Environmental Prediction, Washington, DC, 40 pp.

    Google Scholar 

  • Pu, Z., H. Zhang, and J. A. Anderson, 2013: Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Tellus A, 65, 19620.

    Article  Google Scholar 

  • Pu, Z., S. X. Zhang, M. J. Tong, et al., 2016: Influence of the self-consistent regional ensemble background error covariance on hurricane inner-core data assimilation with the GSI-based hybrid system for HWRF. J. Atmos. Sci., 73, 4911–4925, doi: 10.1175/JAS-D-16-0017.1.

    Article  Google Scholar 

  • Rossow, W. B., Y. C. Zhang, and G. Tselioudis, 2016: Atmospheric diabatic heating in different weather states and the general circulation. J. Climate, 29, 1059–1065, doi: 10.1175/JCLI-D-15-0760.1.

    Article  Google Scholar 

  • Schwarzkopf, M. D., and S. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res. Atmos., 96, 9075–9096, doi: 10.1029/89JD01598.

    Article  Google Scholar 

  • Shen, R. J., E. R. Reiter, and J. F. Bresch, 1986: Some aspects of the effects of sensible heating on the development of summer weather systems over the Tibetan Plateau. J. Atmos. Sci, 43, 2241–2260, doi: 0.1175/1520-0469(1986)043<2241:SAO TEO>2.0.CO;2.

    Article  Google Scholar 

  • Sirutis, J. J., and K. Miyakoda, 1990: Subgrid scale physics in 1-month forecasts. Part I: Experiment with four parameterization packages. Mon. Wea. Rev., 118, 1043–1064, doi: 10.11 75/1520-0493(1990)118<1043:SSPIMF>2.0.CO;2.

    Article  Google Scholar 

  • Smith, R. K., 2003: A simple model of the hurricane boundary layer. Quart. J. Roy. Meteor. Soc, 129, 1007–1027, doi: 10.1256/qj.01.197.

    Article  Google Scholar 

  • Tallapragada, V., L. Bernardet, M. K. Biswas, et al., 2014: Hurricane Weather Research and Forecasting (HWRF) Model: 2014 Scientific Documentation. NCAR HWRF Development Testbed Center Tech. Rep., 99 pp.

    Google Scholar 

  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound-Layer Meteor, 37, 129–148, doi: 10.1007/BF00122 760.

    Article  Google Scholar 

  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291–304, doi: 0.1175152004931994)122<029:TSDAD S>2.0.CO;2.

    Article  Google Scholar 

  • Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane-environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264–2282, doi: 10.1175/1520-0469(1996) 053<2264:ANSOTF>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, F. M., and Z. X. Pu, 2017: Effects of vertical eddy diffus-ivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 1879–1905, doi: 10.1175/JAS-D-16-0214.1.

    Article  Google Scholar 

  • Zhang, F. M., Z. X. Pu, and C. H. Wang, 2017: Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon. Wea. Rev., 145, 2343–2361, doi: 10.1175/MWR-D-16-0421.1.

    Article  Google Scholar 

  • Zhang, J. A., D. S. Nolan, R. F. Rogers, et al., 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136–3155, doi: 10.1175/MWR-D-14-00339.1.

    Article  Google Scholar 

  • Zheng, X. Y., and E. A. B. Eltahir, 1998: A soil moisture-rainfall feedback mechanism: 2. Numerical experiments. Water Resour. Res., 34, 777–785, doi: 10.1029/97WR03497.

    Article  Google Scholar 

Download references

Acknowledgments

This study is initially conducted when the first author (FZ) visited the University of Utah. The research was supported by National Science Foundation Award #AGS-1243027 (ZP and FZ). High-performance computing support from Yellowstone (ark:/85065/d7wd3xhc), provided by NCAR’s Computational and Information Systems Laboratory (CISL) and the Center for High-Performance Computing (CHPC) at the University of Utah, is greatly appreciated. Authors also thank the Development Testbed Center (DTC) at the National Center for Atmospheric Research (NCAR) for their efforts to make the community research version of the HWRF model available on a public website. The first and third authors (FZ and CW) were also supported by the National Natural Science Foundation of China (41805032), and the Fundamental Research Funds of the Central Universities (lzujbky-2017-71).

Two anonymous reviewers are appreciated for their constructive comments that are very helpful for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Pu.

Additional information

Supported by the US National Science Foundation (AGS-1243027), National Natural Science Foundation of China (41805032), and Fundamental Research Funds of the Central Universities (lzujbky-2017-71).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Pu, Z. & Wang, C. Impacts of Soil Moisture on the Numerical Simulation of a Post-Landfall Storm. J Meteorol Res 33, 206–218 (2019). https://doi.org/10.1007/s13351-019-8002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-019-8002-8

Key words

Navigation