Skip to main content
Log in

Effects of changing precipitation and warming on functional traits of zonal Stipa plants from Inner Mongolian grassland

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The mechanisms driving changes in dominant plant species are the key for understanding how grassland ecosystems respond to climate change. In this study, we examined plant functional traits (morphological characteristics: plant height, leaf area, and leaf number; biomasses: aboveground, belowground, and total; and growth indices: root-to-shoot ratio, specific leaf area, and leaf mass ratio) of four zonal Stipa species (S. baicalensis, S. bungeana, S. grandis, and S. breviflora) from Inner Mongolian grassland in response to warming (control, +1.5, +2.0, +4.0, and +6.0?), changing precipitation (-30%, -15%, control, +15%, and +30%), and their combined effects via climate control chambers. The results showed that warming and changing precipitation had significant interactive effects, different from the accumulation of single-factor effects, on functional traits of Stipa species. The correlation and sensitivity of different plant functional traits to temperature and precipitation differed. Among the four species, the accumulation and variability of functional traits had greater partial correlation with precipitation than temperature, except for leaf number, leaf area, and specific leaf area, in S. breviflora, S. bungeana, and S. grandis. For S. baicalensis, the accumulation and variability of plant height, aboveground biomass, and root-to-shoot ratio only had significant partial correlation with precipitation. However, the variability of morphological characteristics, biomasses, and some growth indices, was more sensitive to temperature than precipitation in S. bungeana, S. grandis, and S. breviflora—except for aboveground biomass and plant height. These results reveal that precipitation is the key factor determining the growth and changes in plant functional traits in Stipa species, and that temperature mainly influences the quantitative fluctuations of the changes in functional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, K. R., H. Ro-Poulsen, T. N. Mikkelsen, et al., 2011: Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ., 34, 1207–1222, doi: 10.1111/j.1365-3040.2011.02320.x.

    Article  Google Scholar 

  • Bai, Y. F., X. G. Han, J. G. Wu, et al., 2004: Ecosystem stability and compensatory effects in the Inner Mongolian grassland. Nature, 431, 181–184, doi: 10.1038/nature02850.

    Article  Google Scholar 

  • Barnabás, B., K. Jäger, and A. Fehér, 2008: The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ., 31, 11–38, doi: 10.1111/j.1365-3040.2007.01727.x.

    Google Scholar 

  • Bret-Harte, M. S., G. R. Shaver, J. P. Zoerner, et al., 2001: Developmental plasticity allows betula nana to dominate tundra subjected to an altered environment. Ecology, 82, 18–32, doi: 10.1890/00129658(2001)082[0018:DPABNT]2.0.CO;2.

    Article  Google Scholar 

  • Camberlin, P., N. Martiny, N. Philippon, et al., 2007: Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa. Remote Sens. Environ., 106, 199–216, doi: 10.1016/j.rse.2006.08.009.

    Article  Google Scholar 

  • Chang, X. Y., B. M. Chen, G. Liu, et al., 2015: Effects of climate change on plant population growth rate and community composition change. PLoS One, 10, e0126228, doi: 10.1371/journal.pone.0126228.

    Article  Google Scholar 

  • Cleland, E. E., S. L. Collins, T. L. Dickson, et al., 2013: Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology, 94, 1687–1696, doi: 10.1890/12-1006.1.

    Article  Google Scholar 

  • Cowling, R. M., A. J. Potts, P. L. Bradshaw, et al., 2015: Variation in plant diversity in Mediterraneanclimate ecosystems: The role of climatic and topographical stability. J. Biogeogr., 42, 552–564, doi: 10.1111/jbi.12429.

    Article  Google Scholar 

  • Donovan, L. A., H. Maherali, C. M. Caruso, et al., 2011: The evolution of the worldwide leaf economics spectrum. Trends Ecol. Evol., 26, 88–95, doi: 10.1016/j.tree.2010.11.011.

    Article  Google Scholar 

  • Flanagan, L. B., and G. D. Farquhar, 2014: Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leafand ecosystem-scales in a northern Great Plains grassland. Plant Cell Environ., 37, 425–438, doi: 10.1111/pce.12165.

    Article  Google Scholar 

  • Gao, T., X. C. Yang, Y. X. Jin, et al., 2013: Spatiotemporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, northern China. PLoS One, 8, e83824, doi: 10.1371/journal.pone.0083824.

    Article  Google Scholar 

  • Giorgini, D., P. Giordani, G. Casazza, et al., 2015: Woody species diversity as predictor of vascular plant species diversity in forest ecosystems. Forest Ecol. Manag., 345, 50–55, doi: 10.1016/j.foreco.2015.02.0-16.

    Article  Google Scholar 

  • Hooper, D. U., F. S. Chapin III, J. J. Ewel, et al., 2005: Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr., 75, 3–35, doi: 10.1890/04-0922.

    Article  Google Scholar 

  • Hou, Y. H., G. S. Zhou, Z. Z. Xu, et al., 2013: Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe. PLoS One, 8, e70114. doi: 10.1371/journal.pone.0070114.t001.

    Article  Google Scholar 

  • IPCC, 2013: Climate change 2013: The Physical Science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., et al., Eds., Cambridge University Press, Cambridge, UK and New York, 1535 pp.

    Google Scholar 

  • Li, H. W., and X. P. Yang, 2014: Temperate dryland vegetation changes under a warming climate and strong human intervention with a particular reference to the district Xilin Gol, Inner Mongolia, China. Catena, 119, 9–20, doi: 10.1016/j.catena.2014.03.003.

    Article  Google Scholar 

  • Liu, C. Y., X. F. Dong, and Y. Y. Liu, 2015: Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena, 125, 190–199, doi: 10.1016/j.catena.2014.10.027.

    Article  Google Scholar 

  • Lu Shenglian and Wu Zhenlan, 1996: On geographical distribution of the genus Stipa L. in China. Acta Phytotax. Sinica, 34, 242–253. (in Chinese)

    Google Scholar 

  • Lundholm, J., S. Tran, and L. Gebert, 2015: Plant functional traits predict green roof ecosystem services. Environ. Sci. Technol., 49, 2366–2374, doi: 10.1021/es505426z.

    Article  Google Scholar 

  • Mao, D. H., Z. M. Wang, L. Luo, et al., 2012: Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. Int. J. Appl. Earth Obs. Geoinf., 18, 528–536, doi: 10.1016/j.jag.2011.10.007.

    Article  Google Scholar 

  • Morison, J. I. L., and D. W. Lawlor, 1999: Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ., 22, 659–682, doi: 10.1046/j.1365-3040.1999.00443.x.

    Article  Google Scholar 

  • Mowll, W., D. M. Blumenthal, K. Cherwin, et al., 2015: Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia, 177, 959–969, doi: 10.1007/s00442-015-3232-7.

    Article  Google Scholar 

  • Naudts, K., J. van den Berge, I. A. Janssens, et al., 2013: Combined effects of warming and elevated CO2 on the impact of drought in grassland species. Plant Soil, 369, 497–507, doi: 10.1007/s11104-013-1595-2.

    Article  Google Scholar 

  • Parmesan, C., and G. Yohe, 2003: A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  Google Scholar 

  • Pedro, M. S., W. Rammer, and R. Seidl, 2015: Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia, 177, 619–630, doi: 10.1007/s00442-014-3150-0.

    Article  Google Scholar 

  • Pettorelli, N., J. O. Vik, A. Mysterud, et al., 2005: Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecolo. Evol., 20, 503–510, doi: 10.1016/j.tree.2005.05.011.

    Article  Google Scholar 

  • Piao, S. L., A. Mohammat, J. Y. Fang, et al., 2006: NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environ. Chang., 16, 340–348, doi: 10.1016/j.gloenvcha.2006.02.002.

    Article  Google Scholar 

  • Piao, S. L., X. H. Wang, P. Ciais, et al., 2011: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biol., 17, 3228–3239, doi: 10.1111/j.1365-2486.2011.02419.x.

    Article  Google Scholar 

  • Poorter, L., 1999: Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Funct. Ecol., 13, 396–410.

    Article  Google Scholar 

  • Poorter, H., and M. L. Navas, 2003: Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytol., 157, 175–98, doi: 10.1046/j.1365-2435.1999.00332.x.

    Article  Google Scholar 

  • Qaderi, M. M., L. V. Kurepin, and D. M. Reid, 2012: Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environ. Exp. Bot., 75, 107–113, doi: 10.1016/j.envexpbot.2011.09.003.

    Article  Google Scholar 

  • Qian, W. H., X. Lin, Y. F. Zhu, et al., 2007: Climatic regime shift and decadal anomalous events in China. Climatic Change, 84, 167–189, doi: 10.1007/s10584-006-9234-z.

    Article  Google Scholar 

  • Sakschewski, B., W. von Bloh, A. Boit, et al., 2015: Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biol., 21, 2711–2725, doi: 10.1111/gcb.12870.

    Article  Google Scholar 

  • Sapeta, H., J. M. Costa, T. Lourenco, et al., 2013: Drought stress response in Jatropha curcas: Growth and physiology. Environ. Exp. Bot., 85, 76–84, doi: 10.1016/j.envexpbot.2012.08.012.

    Article  Google Scholar 

  • Shen Zehao and Ma Keping, 2014: Effects of climate change on biodiversity. Chinese Sci. Bull., 59, 4637–4638, doi: 10.1007/s11434-014-0654-2.

    Article  Google Scholar 

  • Springate, D. A., and P. X. Kover, 2014: Plant responses to elevated temperatures: A field study on phenological sensitivity and fitness responses to simulated climate warming. Global Change Biol., 20, 456–465, doi: 10.1111/gcb.12430.

    Article  Google Scholar 

  • Sui, X. H., G. S. Zhou, and Q. L. Zhuang, 2013: Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China. Climatic Change, 117, 259–272, doi: 10.1007/s10584-012-0533-2.

    Article  Google Scholar 

  • Tilman, D., J. Knops, D. Wedin, et al., 1997: The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300–1302.

    Article  Google Scholar 

  • Wan Tao, Wei Zhijun, Yang Jing, et al., 1997: Study of pollen morphology of 6 species of Stipa L. in the grassland of Inner Mongolia. Acta Agrestia Sinica, 5, 117–122. (in Chinese)

    Google Scholar 

  • Wang Dawei, Zhao Jun, Yin Dong, et al., 2013: Potential vegetation dynamic analysis of spatial and temporal characteristics of Inner Mongolia's geographical pattern in recent 50 years. Pratacultural Science, 30, 1167–1174. (in Chinese).

    Google Scholar 

  • Wang, J., P. M. Rich, and K. P. Price, 2003: Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens., 24, 2345–2364, doi: 10.1080/01431160210154812.

    Article  Google Scholar 

  • Wang, X. H., S. L. Piao, P. Ciais, et al., 2011: Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA, 108, 1240–1245, doi: 10.1073/pnas.1014425108.

    Article  Google Scholar 

  • Wang, Z., T. X. Luo, R. C. Li, et al., 2013: Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. J. Veg. Sci., 24, 189–201, doi: 10.1111/j.1654-1103.2012.01442.x.

    Article  Google Scholar 

  • Weiss, J. L., D. S. Gutzler, J. E. A. Coonrod, et al., 2004: Seasonal and inter annual relationships between vegetation and climate in central New Mexico, USA. J. Arid Environ., 57, 507–534, doi: 10.1016/S0140-1963(03)00113-7.

    Article  Google Scholar 

  • Wertin, T. M., S. C. Reed, and J. Belnap, 2015: C3 and C4 plant responses to increased temperatures and altered monsoonal precipitation in a cool desert on the Colorado Plateau, USA. Oecologia, 177, 997–1013, doi: 10.1007/s00442-015-3235-4.

    Article  Google Scholar 

  • Williams, A. L., K. E. Wills, J. K. Janes, et al., 2007: Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytol., 176, 365–374, doi: 10.1111/j.1469-8137.2007.02170.x.

    Article  Google Scholar 

  • Wright, I. J., P. B. Reich, M. Westoby, et al., 2004: The worldwide leaf economics spectrum. Nature, 428, 821–827.

    Article  Google Scholar 

  • Xia, J. Y., and S. Q. Wan, 2012: The effects of warmingshifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi-arid grassland. PLoS One, 7, e32088, doi: 10.1371/journal.pone.0032088.

    Article  Google Scholar 

  • Xie, L. N., C. C. Ma, H. Y. Guo, et al., 2014: Distribution pattern of Caragana species under the influence of climate gradient in the Inner Mongolian region, China. J. Arid Land, 6, 311–323, doi: 10.1007/s40333-013-0227-2.

    Article  Google Scholar 

  • Xu, G., H. F. Zhang, B. Z. Chen, et al., 2014: Changes in vegetation growth dynamics and relations with climate over China's landmass from 1982 to 2011. Remote Sens., 6, 3263–3283.

    Article  Google Scholar 

  • Xu, X., R. A. Sherry, S. L. Niu, et al., 2013: Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biol., 19, 2753–2764, doi: 10.1111/gcb.12248.

    Article  Google Scholar 

  • Xu, Z. Z., and G. S. Zhou, 2006: Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism, and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224, 1080–1090, doi: 10.1007/s00425-006-0281-5.

    Article  Google Scholar 

  • Xu, Z. Z., H. Shimizu, S. Ito, et al., 2014: Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 239, 421–435, doi: 10.1007/s00425-013-1987-9.

    Article  Google Scholar 

  • Yang Li'na and Wang Shijin, 2013: Frontier grassland degradation and its countermeasures. Meteor. Environ. Res., 4, 36–38, 40.

    Google Scholar 

  • Yang, Y., G. X. Wang, L. D. Yang, et al., 2013: Effects of drought and warming on biomass, nutrient allocation, and oxidative stress in Abies fabri in eastern Tibetan Plateau. J. Plant Growth Regul., 32, 298–306, doi: 10.1007/s00344-012-9298-0.

    Article  Google Scholar 

  • Yang, Y. H., J. Y. Fang, W. H. Ma, et al., 2010: Largescale pattern of biomass partitioning across China's grasslands. Global Ecol. Biogeogr., 19, 268–277, doi: 10.1111/j.1466-8238.2009.00502.x.

    Article  Google Scholar 

  • Zavalloni, C., S. Vicca, M. Büscher, et al., 2012: Exposure to warming and CO2 enrichment promotes greater above-ground biomass, nitrogen, phosphorus and arbuscular mycorrhizal colonization in newly established grasslands. Plant Soil, 359, 121–136, doi: 10.1007/s11104-012-1190-y.

    Article  Google Scholar 

  • Zhang, G. G., Y. M. Kang, G. D. Han, et al., 2011: Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biol., 17, 377–389, doi: 10.1111/j.1365-2486.2010.02237.x.

    Article  Google Scholar 

  • Zhang Jingting, An Pingli, Pan Zhihua, et al., 2015: Adaptation to a warming–drying trend through cropping system adjustment over three decades: A case study in the northern agro-pastural ecotone of China. J. Meteor. Res., 29, 496–514, doi: 10.1007/s13351-015-4083-1.

    Article  Google Scholar 

  • Zhang Yujin and Zhou Guangsheng, 2008: Terrestrial transect study on driving mechanism of vegetation changes. Sci. China (Ser. D), 51, 984–991, doi: 10.1007/s11430-008-0065-9.

    Article  Google Scholar 

  • Zhao, X., K. Tan, S. Zhao, et al., 2011: Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid Environ., 75, 946–952, doi: 10.1016/j.jaridenv.2011.05.007.

    Article  Google Scholar 

  • Zheng Zhirong, Feng Chaoyang, Ye Shengxing, et al., 2015: Ecological pressures on grassland ecosystems and their conservation strategies in northern China. Chinese J. Popul. Resour. Environ., 13, 87–91, doi: 10.1080/10042857.2014.998871.

    Article  Google Scholar 

  • Zhou, L. M., C. J. Tucker, R. K. Kaufmann, et al., 2001: Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res., 106, 20069–20083, doi: 10.1029/2000JD000115.

    Article  Google Scholar 

  • Zhu, L. K., and J. J. Meng, 2015: Determining the relative importance of climatic drivers on spring phenology in grassland ecosystems of semi-arid areas. Int. J. Biometeor., 59, 237–248, doi: 10.1007/s00484-014-0839-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Zhou  (周广胜).

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201506001-3), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050408), and National (Key) Basic Research and Development (973) Program of China (2010CB951300).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, X., Zhou, G., Wang, Y. et al. Effects of changing precipitation and warming on functional traits of zonal Stipa plants from Inner Mongolian grassland. J Meteorol Res 30, 412–425 (2016). https://doi.org/10.1007/s13351-016-5091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-016-5091-5

Key words

Navigation