Skip to main content

Advertisement

Log in

A hypotonic gel-forming eye drop provides enhanced intraocular delivery of a kinase inhibitor with melanin-binding properties for sustained protection of retinal ganglion cells

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

While eye drops are the most common ocular dosage form, eye drops for treating diseases of the posterior segment (retina, choroid, optic nerve) have yet to be developed. In glaucoma, eye drops are used extensively for delivering intraocular pressure (IOP)-lowering medications to the anterior segment. However, degeneration of retinal ganglion cells (RGCs) in the retina may progress despite significant IOP lowering, suggesting that a complementary neuroprotective therapy would improve glaucoma management. Here, we describe a hypotonic, thermosensitive gel-forming eye drop for effective delivery of sunitinib, a protein kinase inhibitor with activity against the neuroprotective targets dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK), to enhance survival of RGCs after optic nerve injury. Further, binding of sunitinib to melanin in the pigmented cells in the choroid and retinal pigment epithelium (RPE) led to prolonged intraocular residence time, including therapeutically relevant concentrations in the non-pigmented retinal tissue where the RGCs reside. The combination of enhanced intraocular absorption provided by the gel-forming eye drop vehicle and the intrinsic melanin binding properties of sunitinib led to significant protection of RGCs with only once weekly eye drop dosing. For a chronic disease such as glaucoma, an effective once weekly eye drop for neuroprotection could result in greater patient adherence, and thus, greater disease management and improved patient quality of life.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Atey TM, et al. The impact of adherence and instillation proficiency of topical glaucoma medications on intraocular pressure. J Ophthalmol. 2017;2017:1683430.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rodrigues GA, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim YC, et al. Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat Biomed Eng. 2020;4(11):1053–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roskoski R Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun. 2007;356(2):323–8.

    Article  CAS  PubMed  Google Scholar 

  5. Welsbie DS, et al. Enhanced functional genomic screening identifies novel mediators of dual leucine zipper kinase-dependent injury signaling in neurons. Neuron, 2017;94(6): p. 1142–1154 e6.

  6. Welsbie DS, et al. Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A. 2013;110(10):4045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watkins TA, et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci U S A. 2013;110(10):4039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller BR, et al. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci. 2009;12(4):387–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Durairaj C, Chastain JE, Kompella UB. Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes. Exp Eye Res. 2012;98:23–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rimpela AK, et al. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev. 2018;126:23–43.

    Article  CAS  PubMed  Google Scholar 

  11. Chen KG, et al. Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci U S A. 2006;103(26):9903–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salazar M, Patil PN. An explanation for the long duration of mydriatic effect of atropine in eye. Invest Ophthalmol. 1976;15(8):671–3.

    CAS  PubMed  Google Scholar 

  13. Rimpela AK, et al. Melanin targeting for intracellular drug delivery: quantification of bound and free drug in retinal pigment epithelial cells. J Control Release. 2018;283:261–8.

    Article  CAS  PubMed  Google Scholar 

  14. Laster M, Norris KC. Lesson learned in mortality and kidney transplant outcomes among pediatric dialysis patients. J Am Soc Nephrol. 2017;28(5):1334–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wolkow N, et al. Iron upregulates melanogenesis in cultured retinal pigment epithelial cells. Exp Eye Res. 2014;128:92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheruvu NP, Amrite AC, Kompella UB. Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci. 2008;49(1):333–41.

    Article  PubMed  Google Scholar 

  17. Speed B, et al. Pharmacokinetics, distribution, and metabolism of [14C]sunitinib in rats, monkeys, and humans. Drug Metab Dispos. 2012;40(3):539–55.

    Article  CAS  PubMed  Google Scholar 

  18. Rimpela AK, et al. Drug distribution to retinal pigment epithelium: studies on melanin binding, cellular kinetics, and single photon emission computed tomography/computed tomography imaging. Mol Pharm. 2016;13(9):2977–86.

    Article  CAS  PubMed  Google Scholar 

  19. Du W, et al. The effect of ocular pigmentation on transscleral delivery of triamcinolone acetonide. J Ocul Pharmacol Ther. 2013;29(7):633–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ono C, Tanaka M. Binding characteristics of fluoroquinolones to synthetic levodopa melanin. J Pharm Pharmacol. 2003;55(8):1127–33.

    Article  CAS  PubMed  Google Scholar 

  21. Koeberle MJ, et al. Development of a liquid chromatography-mass spectrometric method for measuring the binding of memantine to different melanins. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;787(2):313–22.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmado A, et al. Induction of differentiation by pyruvate and DMEM in the human retinal pigment epithelium cell line ARPE-19. Invest Ophthalmol Vis Sci. 2011;52(10):7148–59.

    Article  CAS  PubMed  Google Scholar 

  23. Hackett SF, et al. Sustained delivery of acriflavine from the suprachoroidal space provides long term suppression of choroidal neovascularization. Biomaterials. 2020;243:119935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodman VL, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13(5):1367–73.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, et al. Differential gamma-synuclein expression in acute and chronic retinal ganglion cell death in the retina and optic nerve. Mol Neurobiol. 2020;57(2):698–709.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang SM, et al. Beta-III-tubulin: a reliable marker for retinal ganglion cell labeling in experimental models of glaucoma. Int J Ophthalmol. 2015;8(4):643–52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Quigley HA. Use of animal models and techniques in glaucoma research: introduction. Methods Mol Biol. 2018;1695:1–10.

    Article  CAS  PubMed  Google Scholar 

  28. Leblanc B, et al. Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol. 1998;28(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  29. Singh R, et al. Clinical evaluation of pazopanib eye drops in healthy subjects and in subjects with neovascular age-related macular degeneration. Retina. 2014;34(9):1787–95.

    Article  CAS  PubMed  Google Scholar 

  30. Nomoto H, et al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2009;50(10):4807–13.

    Article  PubMed  Google Scholar 

  31. Iwase T, et al. Topical pazopanib blocks VEGF-induced vascular leakage and neovascularization in the mouse retina but is ineffective in the rabbit. Invest Ophthalmol Vis Sci. 2013;54(1):503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tse AP, et al. Glaucoma treatment adherence at a United Kingdom general practice. Eye (Lond). 2016;30(8):1118–22.

    Article  CAS  Google Scholar 

  33. Chawla A, McGalliard JN, Batterbury M. Use of eyedrops in glaucoma: how can we help to reduce non-compliance? Acta Ophthalmol Scand. 2007;85(4):464.

    Article  PubMed  Google Scholar 

  34. Aref AA. Sustained drug delivery for glaucoma: current data and future trends. Curr Opin Ophthalmol. 2017;28(2):169–74.

    Article  PubMed  Google Scholar 

  35. Black AC, et al. Latanoprost in pediatric glaucoma–pediatric exposure over a decade. J AAPOS. 2009;13(6):558–62.

    Article  PubMed  Google Scholar 

  36. Fogagnolo P, Rossetti L. Medical treatment of glaucoma: present and future. Expert Opin Investig Drugs. 2011;20(7):947–59.

    Article  CAS  PubMed  Google Scholar 

  37. Sarna T. Properties and function of the ocular melanin–a photobiophysical view. J Photochem Photobiol B. 1992;12(3):215–58.

    Article  CAS  PubMed  Google Scholar 

  38. Hu DN, Simon JD, Sarna T. Role of ocular melanin in ophthalmic physiology and pathology. Photochem Photobiol. 2008;84(3):639–44.

    Article  CAS  PubMed  Google Scholar 

  39. Rozanowska M, et al. Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med. 1999;26(5–6):518–25.

    CAS  PubMed  Google Scholar 

  40. Wakamatsu K, et al. Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Melanoma Res. 2008;21(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  41. Jakubiak P, et al. Establishment of an in vitro-in vivo correlation for melanin binding and the extension of the ocular half-life of small-molecule drugs. Mol Pharm. 2019;16(12):4890–901.

    Article  CAS  PubMed  Google Scholar 

  42. Pitkanen L, et al. Binding of betaxolol, metoprolol and oligonucleotides to synthetic and bovine ocular melanin, and prediction of drug binding to melanin in human choroid-retinal pigment epithelium. Pharm Res. 2007;24(11):2063–70.

    Article  PubMed  Google Scholar 

  43. Steiner K, Buhring KU, Merck E. The melanin binding of bisoprolol and its toxicological relevance. Lens Eye Toxic Res. 1990;7(3–4):319–33.

    CAS  PubMed  Google Scholar 

  44. Salazar M, Shimada K, Patil PN. Iris pigmentation and atropine mydriasis. J Pharmacol Exp Ther. 1976;197(1):79–88.

    CAS  PubMed  Google Scholar 

  45. Acheampong AA, Shackleton M, Tang-Liu DD. Comparative ocular pharmacokinetics of brimonidine after a single dose application to the eyes of albino and pigmented rabbits. Drug Metab Dispos. 1995;23(7):708–12.

    CAS  PubMed  Google Scholar 

  46. Burke JA, et al. The role of ocular pigmentation in the intraocular pressure response to brimonidine in rabbits. Invest Ophthalmol Vis Sci. 2011;52(14):2466–2466.

    Google Scholar 

  47. Araie M, et al. Beta-adrenergic blockers: ocular penetration and binding to the uveal pigment. Jpn J Ophthalmol. 1982;26(3):248–63.

    CAS  PubMed  Google Scholar 

  48. Nagata A, et al. Binding of antiglaucomatous drugs to synthetic melanin and their hypotensive effects on pigmented and nonpigmented rabbit eyes. Jpn J Ophthalmol. 1993;37(1):32–8.

    CAS  PubMed  Google Scholar 

  49. Tsujinaka H, et al. Sustained treatment of retinal vascular diseases with self-aggregating sunitinib microparticles. Nat Commun. 2020;11(1):694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coleman CI, et al. Dosing frequency and medication adherence in chronic disease. J Manag Care Pharm. 2012;18(7):527–39.

    PubMed  Google Scholar 

  51. Saini SD, et al. Effect of medication dosing frequency on adherence in chronic diseases. Am J Manag Care. 2009;15(6):e22-33.

    PubMed  Google Scholar 

  52. Caldeira D, Vaz-Carneiro A, Costa J. The impact of dosing frequency on medication adherence in chronic cardiovascular disease: systematic review and meta-analysis. Rev Port Cardiol. 2014;33(7–8):431–7.

    Article  PubMed  Google Scholar 

  53. Laliberte F, et al. Impact of daily dosing frequency on adherence to chronic medications among nonvalvular atrial fibrillation patients. Adv Ther. 2012;29(8):675–90.

    Article  PubMed  Google Scholar 

  54. Cramer JA, et al. Compliance and persistence with bisphosphonate dosing regimens among women with postmenopausal osteoporosis. Curr Med Res Opin. 2005;21(9):1453–60.

    Article  CAS  PubMed  Google Scholar 

  55. Iglay K, et al. Systematic literature review and meta-analysis of medication adherence with once-weekly versus once-daily therapy. Clin Ther, 2015. 37(8): p. 1813–21 e1.

  56. Cramer JA, et al. The effect of dosing frequency on compliance and persistence with bisphosphonate therapy in postmenopausal women: a comparison of studies in the United States, the United Kingdom, and France. Clin Ther. 2006;28(10):1686–94.

    Article  CAS  PubMed  Google Scholar 

  57. Qiao Q, et al. Adherence to GLP-1 receptor agonist therapy administered by once-daily or once-weekly injection in patients with type 2 diabetes in Germany. Diabetes Metab Syndr Obes. 2016;9:201–5.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ishii H, et al. Randomized multicenter evaluation of quality of life and treatment satisfaction in type 2 diabetes patients receiving once-weekly trelagliptin versus a daily dipeptidyl peptidase-4 inhibitor. Diabetes Ther. 2019;10(4):1369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ito H, et al. Changes in medication adherence and unused drugs after switching from daily dipeptidyl peptidase-4 inhibitors to once-weekly trelagliptin in patients with type 2 diabetes. Diabetes Res Clin Pract. 2019;153:41–8.

    Article  CAS  PubMed  Google Scholar 

  60. Waisbourd M, et al. The Wills Eye Glaucoma app: interest of patients and their caregivers in a smartphone-based and tablet-based glaucoma application. J Glaucoma. 2016;25(9):e787–91.

    Article  PubMed  Google Scholar 

  61. ADAGIO Study provides evidence that GB-102 can achieve sustained-drug delivery in the treatment of wet age-related macular degeneration (AMD). [cited 2020 Dec. 26th]; Available from: https://www.graybug.vision/graybug-vision-presents-top-line-results-of-phase-1-2a-adagio-study-at-hawaiian-eye-retina-2019/.

  62. A depot formulation of sunitinib malate (GB-102) compared to aflibercept in subjects with wet AMD (ALTISSIMO) (ClinicalTrials.gov Identifier: NCT03953079). [cited 2020 Dec. 26th].

Download references

Acknowledgements

The authors thank the veterinary and husbandry staff for their assistance and Fareeha Zulfiqar for administrative support. The authors thank the veterinary and husbandry staff for their assistance and Fareeha Zulfiqar for administrative support.

Funding

This work was supported by the National Institutes of Health (R01EY031041, R01EY026578 and P30EY001765), the Robert H. Smith Family Foundation, a Sybil B. Harrington Special Scholar Award and a departmental grant from Research to Prevent Blindness, the KKESH—WEI Collaborative Research Fund, a Hartwell Foundation Postdoctoral Fellowship, and the Guerrieri Family Research Fund. Drug measurements were conducted by the Analytical Pharmacology Core (APC) of the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. The work conducted by the APC was supported by NIH grants P30CA006973 and S10OD020091, as well as grant number UL1TR003098 from the National Center for Advancing Translational Sciences (NCATS), a component of the National Institutes of Health (NIH), and the NIH Roadmap for Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: L.M.E, J.H., D.J.Z., Y.C.K. Data collection and analysis: H.T.H., M.D.S., C.A.B., H.H., N.M.A., A.H., K.T.L., R.T.C., H.K., M.B.A., U.R., P.K., C.E., I.P. Writing and editing: L.M.E., Y.C.K., H.T.H., N.M.A., I.P., D.J.Z. All the authors read and approved of the final version of the manuscript.

Corresponding author

Correspondence to Laura M. Ensign.

Ethics declarations

Ethical approval and consent to participate

All institutional and national guidelines for the care and use of laboratory animals were followed.

Consent for publication

All authors give consent for publication.

Competing interests

Y.C.K., L.M.E., H.T.H., and J.H. are inventors on patents/patent applications related to this technology. J.H. and L.M.E. are co-founders of a start-up company planning to develop the eye drop technology for clinical use. DJZ and CAB are inventors on patents related to sunitinib and neuroprotection. Some of these patents have been licensed to Graybug Vision and to Oriole Therapeutics. J.H. is a co-founder and equity owner of Graybug Vision, and both J.H. and Johns Hopkins own company stock. DJZ is a co-founder and equity owner in Oriole Therapeutics. These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. All other authors declare that they have no competing interests.

Disclaimer

The contents is solely the responsibility of the authors and does not necessarily represent the official view of the NCATS or NIH.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2576 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.C., Hsueh, H.T., Shin, M.D. et al. A hypotonic gel-forming eye drop provides enhanced intraocular delivery of a kinase inhibitor with melanin-binding properties for sustained protection of retinal ganglion cells. Drug Deliv. and Transl. Res. 12, 826–837 (2022). https://doi.org/10.1007/s13346-021-00987-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00987-6

Keywords

Navigation