Skip to main content

Advertisement

Log in

Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p < 0.05) being observed at day 14. EPO induced early deposition of collagen as evaluated by Masson trichrome staining that correlated well with the hydroxyproline content assay, with the highest level at days 3 and 7. Vascular endothelial growth factor (VEGF) showed greater amount of new microvasculature formed in the EPO-treated group, while moderate improvement occurs in the LO and OO groups. EPO increased both the expression of proinflammatory cytokines and growth factors in the early stage of healing and declined at the later stage of healing. LO modulates the proinflammatory cytokines and chemokine but did not affect the growth factors. In contrast, OO induced the expression of growth factors rather than proinflammatory cytokines. These data suggest that LO, EPO, and OO emulsions promote wound healing but they accomplish this by different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lai HY, Lim YY, Kim KH. Potential dermal wound healing agent in Blechnum orientale Linn. BMC Complement Altern Med. 2011;11(1):62.

    Article  CAS  Google Scholar 

  2. Dhiyaaldeen SM, Alshawsh M a, Salama SM, Alwajeeh NSI, Batran R Al, Ismail S, et al. Potential activity of 3-(2-chlorophenyl)-1-phenyl-propenonein accelerating wound healing in rats. Biomed Res Int. 2014;10 pages.

  3. Neves J, Ract R, Andreia F, De MS, Gomes H, Bortolon JR, et al. Production of vegetable oil blends and structured lipids and their effect on wound healing. Brazilian J Pharm Sci. 2015;51(2):415–27.

    Article  Google Scholar 

  4. Ferreira AM, de Souza BMV, Rigotti MA. The use of fatty acids in wound care: an integrative review of the Brazilian literature. Rev Esc Enferm USP. 2012;46(3):745–53.

    Article  Google Scholar 

  5. Rodrigues HG, Vinolo MA, Magdalon J, Vitzel K, Nachbar RT, Pessoa AF, et al. Oral administration of oleic or linoleic acid accelerates the inflammatory phase of wound healing. J Invest Dermatol. 2012;132:208–15.

    Article  CAS  Google Scholar 

  6. Cardoso CRB, Souza MA, Ferro EAV, Favoreto S, Pena JDO. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 2004;12(2):235–43.

    Article  Google Scholar 

  7. Berdick M. The role of fats and oils in cosmetics. J Am Oil Chem Soc. 1972;49(7):406–8.

    Article  CAS  Google Scholar 

  8. Yara-Varón E, Li Y, Balcells M, Canela-Garayoa R, Fabiano-Tixier A-S, Chemat F. Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules. 2017;22(9)

  9. King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci. 2006;26(17):4672–80.

    Article  CAS  Google Scholar 

  10. Jafari HRN, Taghavi MM, Shariati M, Vazeirnejad R, Rezvani ME. Both omega-3 and omega-6 polyunsaturated fatty acids stimulate foot wound healing in chronic diabetic rat. African J Pharm Pharmacol. 2011;5(14):1713–7.

    Article  Google Scholar 

  11. Goyal A, Sharma V, Upadhyay N, Singh a K, Arora S, Lal D, et al. Development of stable flaxseed oil emulsions as a potential delivery system of ω-3 fatty acids. J Food Sci Technol. 2015;52(7):4256–65.

    Article  CAS  Google Scholar 

  12. Waraho T, McClements DJ, EA D. Impact of free fatty acid concentration and structure on lipid oxidation in oil-in-water emulsions. Food Chem. 2011;129(3):854–9.

    Article  CAS  Google Scholar 

  13. Zielińska A, Nowak I. Fatty acids in vegetable oils and their importance in cosmetic industry. Chem Aust. 2014;68(2):103–10.

    Google Scholar 

  14. Ruthig DJ, Meckling-Gill KA. Both (n-3) and (n-6) fatty acids stimulate wound healing in the rat intestinal epithelial cell line, IEC-6. J Nutr. 1999;129(10):1791–8.

    Article  CAS  Google Scholar 

  15. Franco EDS, Maria C, de Aquino F, de Medeiros PL, Evêncio LB, Bernadete M, et al. Effect of a semisolid formulation of Linum usitatissimum L. (linseed) oil on the repair of skin wounds. Evidence-based Complement Altern Med. 2012;7 pages.

  16. McDaniel J, Belury M, Ahijevych K, Blakely W. Omega-3 fatty acids effect on wound healing. Wound Repair Regen. 2008;16(3):337–45.

    Article  Google Scholar 

  17. Nettleton JA. Omega-3 fatty acids: comparison of plant and seafood sources in human nutrition. J Am Diet Assoc. 1991;91(3):331–7.

    CAS  PubMed  Google Scholar 

  18. Koca Kutlu A, Ceçen D, Gürgen SG, Sayın O, Cetin F. A comparison study of growth factor expression following treatment with transcutaneous electrical nerve stimulation, saline solution, povidone-iodine, and lavender oil in wounds healing. Evid Based Complement Alternat Med. 2013;9 pages.

  19. Perini JA, Angeli-Gamba T, Alessandra-Perini J, Ferreira LC, Nasciutti LE, Machado DE. Topical application of Acheflan on rat skin injury accelerates wound healing: a histopathological, immunohistochemical and biochemical study. BMC Complement Altern Med. 2015;15(1):203.

    Article  Google Scholar 

  20. Gangwar M, Gautam MK, Ghildiyal S, Nath G, Goel RK. Mallotus philippinensis Muell. Arg fruit glandular hairs extract promotes wound healing on different wound model in rats. BMC Complement Altern Med. 2015;1(123):1–9.

    Google Scholar 

  21. Bardaa S, Moalla D, Ben Khedir S, Rebai T, Sahnoun Z. The evaluation of the healing proprieties of pumpkin and linseed oils on deep second-degree burns in rats. Pharm Biol. 2016;54(4):581–7.

    Article  CAS  Google Scholar 

  22. Beroual K, Agabou A, Abdeldjelil M, Boutaghane N, Haouam S, Hamdi-pacha Y, et al. Evaluation of crude flaxseed (Linum usitatissimum L.) oil in burn wound healing in New Zealand rabbits. Afr J Tradit Complement Altern Med. 2017;14(3):280–6.

    Article  CAS  Google Scholar 

  23. Lewinska A, Zebrowski J, Duda M, Gorka A, Wnuk M. Fatty acid profile and biological activities of linseed and rapeseed oils. Molecules. 2015;20(12):22872–80.

    Article  CAS  Google Scholar 

  24. Farahpour MR, Taghikhani H, Habibi M, Amin M. Wound healing activity of flaxseed Linum usitatissimum L. in rats. African J Pharm Pharmacol. 2011;5(21):2386–9.

    CAS  Google Scholar 

  25. Nasiri M, Fayazi S, Jahani S, Yazdanpanah L, Haghighizadeh MH. The effect of topical olive oil on the healing of foot ulcer in patients with type 2 diabetes: a double-blind randomized clinical trial study in Iran. J Diabetes Metab Disord. 2015;14(1):1–10.

    Article  Google Scholar 

  26. Edraki M, Akbarzadeh A, Hosseinzadeh A, Tanideh N, Salehi A, Koohi-Hosseinabadi O. Healing effect of sea buckthorn, olive oil, and their mixture on full-thickness burn wounds. Adv Ski Wound Care. 2014;27(7):317–23.

    Article  Google Scholar 

  27. Sakazaki F, Kataoka H, Okuno T, Ueno H, Semma M, Ichikawa A, et al. Ozonated olive oil enhances the growth of granulation tissue in a mouse model of pressure ulcer. Ozone Sci Eng. 2007;29(6):503–7.

    Article  CAS  Google Scholar 

  28. Najmi M, Shariatpanahi ZV, Tolouei M, Amiri Z. Effect of oral olive oil on healing of 10–20% total body surface area burn wounds in hospitalized patients. Burns. 2015;41(3):493–6.

    Article  Google Scholar 

  29. Shamaki BU, Yusuf A, Balla HJ, Halima IG, Sherifat OB, Abdulrahman FI, et al. Evaluation of chemical composition and the comparative wound healing effect of natural honey and olive oil in rabbits. Infin Commun Appl Sci. 2014;2(2):149–69.

    Google Scholar 

  30. Rosa A dos S, Bandeira LG, Monte-Alto-Costa A, Romana-Souza B. Supplementation with olive oil, but not fish oil, improves cutaneous wound healing in stressed mice. Wound Repair Regen. 2014;22(4):537–47.

    Article  Google Scholar 

  31. Mahdi ES, Noor AM, Sakeena MH, Abdullah GZ, Abdulkarim MF, Sattar MA. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int J Nanomedicine. 2011;6:2499–512.

    Article  CAS  Google Scholar 

  32. Choi J-H, Yu BP. Brain synaptosomal aging: free radicals and membrane fluidity. Free Radic Biol Med. 1995;18(2):133–9.

    Article  CAS  Google Scholar 

  33. Orengo IF, Black HS, Kettler AH, Wolf JE. Influence of dietary menhaden oil upon carcinogenesis and various cutaneous responses to ultraviolet radiation. Photochem Photobiol. 1989;49(1):71–7.

    Article  CAS  Google Scholar 

  34. Kinsella JE, Broughton KS, Whelan JW. Dietary unsaturated fatty acids: interactions and possible needs in relation to eicosanoid synthesis. J Nutr Biochem. 1990;1(3):123–41.

    Article  CAS  Google Scholar 

  35. Kumagai T, Kawamoto Y, Nakamura Y, Hatayama I, Satoh K, Osawa T, et al. 4-Hydroxy-2-nonenal, the end product of lipid peroxidation, is a specific inducer of cyclooxygenase-2 gene expression. Biochem Biophys Res Commun. 2000;273:437–41.

    Article  CAS  Google Scholar 

  36. Bigliardi PL, Alsagoff SAL, El-Kafrawi HY, Pyon JK, Wa CTC, Villa MA. Povidone iodine in wound healing: a review of current concepts and practices. Int J Surg. 2017;44:260–8.

    Article  Google Scholar 

  37. Goldenheim PD. An appraisal of povidone-iodine and wound healing. Postgr Med J. 1993;3:97–105.

    Google Scholar 

  38. Wang L, Qin W, Zhou Y, Chen B, Zhao X, Zhao H, et al. Transforming growth factor β plays an important role in enhancing wound healing by topical application of povidone-iodine. Sci Rep. 2017;7(1):1–8.

    Article  Google Scholar 

  39. de Wet PM, Rode H, Matley P, Brown R. A clinical assessment of the pharmacodynamics of 5% povidone iodine cream in burned children. Dermatology. 1997;195:155.

    Article  Google Scholar 

  40. de Kock M, van der Merwe AE, Swarts C. A comparative study of povidone iodine cream and silver sulphadiazine in the to pical treatment of burns. In: Selwyn S (ed), Proceedings of the First Asian/Pacific Congress on Antisepsis, Royal Society of Medicine Services Ltd. 1988.

  41. Park N-Y, Valacchi G, Lim Y. Effect of dietary conjugated linoleic acid supplementation on early inflammatory responses during cutaneous wound healing. Mediat Inflamm. 2010;2010:2–9.

    Article  Google Scholar 

  42. Granica S, Czerwińska ME, Piwowarski JP, Ziaja M, Kiss AK. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J Agric Food Chem. 2013;61(4):801–10.

    Article  CAS  Google Scholar 

  43. Perona JS, Cabello-Moruno R, Ruiz-Gutierrez V. The role of virgin olive oil components in the modulation of endothelial function. J Nutr Biochem. 2006;17(7):429–45.

    Article  CAS  Google Scholar 

  44. Puertollano MA, Puertollano E, Álvarez de Cienfuegos G, de Pablo MA. Significance of olive oil in the host immune resistance to infection. Br J Nutr. 2007;98(1):54–8.

    Article  Google Scholar 

  45. Ray NB, Lam NT, Luc R, Bonvino NP, Karagiannis TC. Cellular and molecular effects of bioactive phenolic compounds in olives and olive oil. In: AOCS Press. 2015. p. 53–92.

  46. Lin T-K, Zhong L, Santiago J. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int J Mol Sci. 2017;19(1):70.

    Article  Google Scholar 

  47. Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int. 2010;203(1–3):93–8.

    Article  CAS  Google Scholar 

  48. Smith AN, Muffley LA, Bell AN, Numhom S, Hocking AM. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators. J Cell Physiol. 2012;227(9):3225–33.

    Article  CAS  Google Scholar 

  49. Pereira LM, Hatanaka E, Martins EF, Oliveira F, Liberti EA, Farsky SH, et al. Effect of oleic and linoleic acids on the inflammatory phase of wound healing in rats. Cell Biochem Funct. 2008;26:197–204.

    Article  CAS  Google Scholar 

  50. Yoshida H, Miura S, Kishikawa H, Hirokawa M, Nakamizo H, Nakatsumi RC, et al. Fatty acids enhance GRO/CINC-1 and interleukin-6 production in rat intestinal epithelial cells. J Nutr. 2001;131(11):2943–50.

    Article  CAS  Google Scholar 

  51. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.

    Article  Google Scholar 

  52. Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym. 2014;114:312–20.

    Article  CAS  Google Scholar 

  53. Gallucci RM, Simeonova PP, Matheson JM, Kommineni C, Guriel JL, Sugawara T, et al. Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. Fed Am Soc Exp Biol. 2000;14(15):2525–31.

    CAS  PubMed  Google Scholar 

  54. Simopoulos P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60(9):502–7.

    Article  CAS  Google Scholar 

  55. Verlengia R, Gorjão R, Kanunfre CC, Bordin S, De Lima TM, Fernandes Martins E, et al. Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids. 2004;39(9):857–64.

    Article  CAS  Google Scholar 

  56. Yaqoob P, Calder P. Effects of dietary lipid manipulation upon inflammatory mediator production by murine macrophages. Cell Immunol. 1995;163(1):120–8.

    Article  CAS  Google Scholar 

  57. de Pablo MA, Ortega E, Gallego AM, Alvarez C, Pancorbo PL, de Cienfuegos GA. The effect of dietary fatty acid manipulation on phagocytic activity and cytokine production by peritoneal cells from Balb/c mice. J Nutr Sci Vitaminol. 1998;44:57–67.

    Article  Google Scholar 

  58. Raja, Sivamani K, Garcia MS, Isseroff RR. Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci. 2007;1(12):2849–68.

    Article  Google Scholar 

  59. Low QEH, Drugea IA, Duffner LA, Quinn DG, Cook DN, Rollins BJ, et al. Wound healing in MIP-1α−/− and MCP-1−/− mice. Am J Pathol. 2001;159(2):457–63.

    Article  CAS  Google Scholar 

  60. Jiang CK, Magnaldo T, Ohtsuki M, Freedberg IM, Bernerd F, Blumenberg M. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. In: Proceedings of the National Academy of Sciences of the United States of America. 1993. p. 6786–90.

  61. Ando Y, Jensen PJ. Epidermal growth factor and insulin like growth factor I enhance keratinocyte migration. J Invest Dermatol. 1993;100:633–9.

    Article  CAS  Google Scholar 

  62. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164(6):1935–47.

    Article  CAS  Google Scholar 

  63. Walz A, Peveri P, Aschauer H, Baggiolini M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun. 1987;149(2):755–61.

    Article  CAS  Google Scholar 

  64. Detmers PA, Lo SK, Olsen-Egbert E, Walz A, Baggiolini M, Cohn ZA, et al. Neutrophils-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med. 1990;171(4):1155–62.

    Article  CAS  Google Scholar 

  65. Otranto M, Do Nascimento AP, Monte-Alto-Costa A. Effects of supplementation with different edible oils on cutaneous wound healing. Wound Repair Regen. 2010;18(6):629–36.

    Article  Google Scholar 

Download references

Funding

This study was supported by a research grant from the Ministry of Higher Education, Malaysia (ERGS/1/2013/SKK02/UKM/02/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Hanif Zulfakar.

Ethics declarations

This manuscript submitted for publication must comply with the current laws of Malaysia.

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishak, W.M.W., Katas, H., Yuen, N.P. et al. Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats. Drug Deliv. and Transl. Res. 9, 418–433 (2019). https://doi.org/10.1007/s13346-018-0522-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0522-8

Keywords

Navigation