Skip to main content

Advertisement

Log in

Antifungal activity of oral (Tragacanth/acrylic acid) Amphotericin B carrier for systemic candidiasis: in vitro and in vivo study

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In an effort to increase the oral bioavailability of Amphotericin B (AmB), a pH-sensitive drug carrier composed of Tragacanth (Trag) and acrylic acid (AAc) was prepared using γ-irradiation. The swelling behavior of (Trag/AAc) hydrogels was characterized as a function of pH and ionic strength of the swelling medium. The obtained swelling indices revealed the ability of the prepared hydrogel to protect a loaded drug in stomach-simulated medium (Fickian behavior) and to release such drug in intestinal-simulated medium (non-Fickian behavior). In vitro release studies of the antifungal (AmB) were performed to evaluate the hydrogel potential as a drug carrier. The antifungal activity of the prepared oral formulation was investigated in a mouse model of systemic candidiasis. Data revealed that (Trag/AAc)-AmB has a potent antifungal efficacy as demonstrated by prolonging the survival time and reducing the tissue fungal burden, serum antibody titers, as well as inflammatory cytokines in kidney and liver tissues. Furthermore, in vivo toxicity of (Trag/AAc)-AmB was assessed via measuring kidney and liver functions, and results displayed the safety of this novel AmB formulation which was confirmed by histopathological examination. Overall, results indicated that the prepared (Trag/AAc)-AmB is an effective oral delivery system for AmB with better bioavailability and minimal toxicity and could represent a promising approach for improving the therapeutic index of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Diro E, van Griensven J, Mohammed R, Colebunders R, Asefa M, Hailu A, et al. Atypical manifestations of visceral leishmaniasis in patients with HIV in north Ethiopia: a gap in guidelines for the management of opportunistic infections in resource poor settings. Lancet Infect Dis. 2015;15(1):122–9. https://doi.org/10.1016/s1473-3099(14)70833-3.

    Article  PubMed  Google Scholar 

  2. Hussain A, Samad A, Singh SK, Ahsan MN, Haque MW, Faruk A, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv. 2016;23(2):652–67. https://doi.org/10.3109/10717544.2014.933284.

    Article  Google Scholar 

  3. Messori A, Fadda V, Maratea D, Trippoli S, Marinai C. Nephrotoxicity of different formulations of amphotericin B: summarizing evidence by network meta-analysis. Clin Infect Dis. 2013;57(12):1783–4. https://doi.org/10.1093/cid/cit588.

    Article  PubMed  Google Scholar 

  4. Volmer AA, Szpilman AM, Carreira EM. Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep. 2010;27(9):1329–49. https://doi.org/10.1039/b820743g.

    Article  CAS  PubMed  Google Scholar 

  5. Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8. https://doi.org/10.1016/j.jconrel.2014.03.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anwar H, Ahmad M, Minhas MU, Rehmani S. Alginate-polyvinyl alcohol based interpenetrating polymer network for prolonged drug therapy, optimization and in-vitro characterization. Carbohydr Polym. 2017;166:183–94. https://doi.org/10.1016/j.carbpol.2017.02.080.

    Article  CAS  PubMed  Google Scholar 

  7. Peppas NA. Devices based on intelligent biopolymers for oral protein delivery. Int J Pharm. 2004;277(1–2):11–7. https://doi.org/10.1016/j.ijpharm.2003.03.001.

    Article  CAS  PubMed  Google Scholar 

  8. Ostroha J, Pong M, Lowman A, Dan N. Controlling the collapse/swelling transition in charged hydrogels. Biomaterials. 2004;25(18):4345–53. https://doi.org/10.1016/j.biomaterials.2003.11.019.

    Article  CAS  PubMed  Google Scholar 

  9. Seeli DS, Prabaharan M. Guar gum oleate-graft-poly(methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier. Carbohydr Polym. 2017;158:51–7. https://doi.org/10.1016/j.carbpol.2016.11.092.

    Article  CAS  PubMed  Google Scholar 

  10. Ghayempour S, Montazer M, Mahmoudi Rad M. Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. Int J Biol Macromol. 2015;81:514–20. https://doi.org/10.1016/j.ijbiomac.2015.08.041.

    Article  CAS  PubMed  Google Scholar 

  11. Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C. 2016;69:1183–91. https://doi.org/10.1016/j.msec.2016.08.032.

    Article  Google Scholar 

  12. Tavakol M, Dehshiri S, Vasheghani-Farahani E. Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth. Carbohydr Polym. 2016;152:504–9. https://doi.org/10.1016/j.carbpol.2016.07.044.

    Article  CAS  PubMed  Google Scholar 

  13. Balaghi S, Mohammadifar MA, Zargaraan A. Physicochemical and rheological characterization of gum Tragacanth exudates from six species of Iranian Astragalus. Food Biophys. 2010;5(1):59–71. https://doi.org/10.1007/s11483-009-9144-5.

    Article  Google Scholar 

  14. Zohuriaan MJ, Shokrolahi F. Thermal studies on natural and modified gums. Polym Test. 2004;23(5):575–9. https://doi.org/10.1016/j.polymertesting.2003.11.001.

    Article  CAS  Google Scholar 

  15. Verbeken D, Dierckx S, Dewettinck K. Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 2003;63(1):10–21. https://doi.org/10.1007/s00253-003-1354-z.

    Article  CAS  PubMed  Google Scholar 

  16. Zafar R, Zia KM, Tabasum S, Jabeen F, Noreen A, Zuber M. Polysaccharide based bionanocomposites, properties and applications: a review. Int J Biol Macromol. 2016;92:1012–24. https://doi.org/10.1016/j.ijbiomac.2016.07.102.

    Article  CAS  PubMed  Google Scholar 

  17. Kiani A, Asempour H. Hydrogel membranes based on gum tragacanth with tunable structures and properties. II. Comprehensive characterization of the swelling behavior. J Appl Polym Sci. 2012;126(S1):E478–E85. https://doi.org/10.1002/app.36782.

    Article  Google Scholar 

  18. Singh B, Varshney L, Francis S, Rajneesh. Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications. Int J Biol Macromol. 2016;88:586–602. https://doi.org/10.1016/j.ijbiomac.2016.03.051.

    Article  CAS  PubMed  Google Scholar 

  19. Ranjbar-Mohammadi M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Gum tragacanth/poly(l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage. Carbohydr Polym. 2016;140:104–12. https://doi.org/10.1016/j.carbpol.2015.12.012.

    Article  CAS  PubMed  Google Scholar 

  20. Fattahi A, Sadrjavadi K, Golozar MA, Varshosaz J, Fathi M-H, Mirmohammad-Sadeghi H. Preparation and characterization of oligochitosan–tragacanth nanoparticles as a novel gene carrier. Carbohydr Polym. 2013;97(2):277–83. https://doi.org/10.1016/j.carbpol.2013.04.098.

    Article  CAS  PubMed  Google Scholar 

  21. Kiani A, Shahbazi M, Asempour H. Hydrogel membranes based on gum tragacanth with tunable structure and properties. I. Preparation method using Taguchi experimental design. J Appl Polym Sci. 2012;124(1):99–108. https://doi.org/10.1002/app.35038.

    Article  CAS  Google Scholar 

  22. Luo K, Li J, Li L, Li J. A facile method for preparing 3D graphene/Ag aerogel via gamma-ray irradiation. Fullerenes, Nanotubes Carbon Nanostruct. 2016;24(11):720–4. https://doi.org/10.1080/1536383x.2016.1224855.

    Article  CAS  Google Scholar 

  23. Maggi L, Segale L, Ochoa Machiste E, Faucitano A, Buttafava A, Conte U. Polymers-gamma ray interaction. Effects of gamma irradiation on modified release drug delivery systems for oral administration. Int J Pharm. 2004;269(2):343–51. https://doi.org/10.1016/j.ijpharm.2003.09.027.

    Article  CAS  PubMed  Google Scholar 

  24. Chapiro A. Radiation chemistry of polymers, basic mechanisms in the radiation chemistry of aqueous media. Radiat Res Suppl. 1964;4:451–55. https://doi.org/10.2307/3583578.

  25. Santos DA, Hamdan JS. Evaluation of broth microdilution antifungal susceptibility testing conditions for Trichophyton rubrum. J Clin Microbiol. 2005;43(4):1917–20. https://doi.org/10.1128/JCM.43.4.1917-1920.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takemoto K, Yamamoto Y, Ueda Y, Sumita Y, Yoshida K, Niki Y. Comparative study on the efficacy of AmBisome and Fungizone in a mouse model of pulmonary aspergillosis. J Antimicrob Chemother. 2006;57(4):724–31. https://doi.org/10.1093/jac/dkl005.

    Article  CAS  PubMed  Google Scholar 

  27. Cocchetto DM, Bjornsson TD. Methods for vascular access and collection of body-fluids from the laboratory rat. J Pharm Sci. 1983;72(5):465–92. https://doi.org/10.1002/jps.2600720503.

    Article  CAS  PubMed  Google Scholar 

  28. Montgomery H, Dymock JF. Determination of nitrite in water. Analyst. 1961;86(102):414-&.

    Google Scholar 

  29. Chen Y, Tang H, Liu Y, Tan H. Preparation and study on the volume phase transition properties of novel carboxymethyl chitosan grafted polyampholyte superabsorbent polymers. J Taiwan Inst Chem Eng. 2016;59:569–77. https://doi.org/10.1016/j.jtice.2015.09.011.

    Article  CAS  Google Scholar 

  30. Muthukumar M. Theory of counter-ion condensation on flexible polyelectrolytes: adsorption mechanism. J Chem Phys. 2004;120(19):9343–50. https://doi.org/10.1063/1.1701839.

    Article  CAS  PubMed  Google Scholar 

  31. Eichenbaum GM, Kiser PF, Simon SA, Needham D. pH and ion-triggered volume response of anionic hydrogel microspheres. Macromolecules. 1998;31(15):5084–93. https://doi.org/10.1021/ma970897t.

    Article  CAS  PubMed  Google Scholar 

  32. Drozdov AD, Christiansen JD. Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels. Model Simul Mater Sci Eng. 2015;23(5):055005. https://doi.org/10.1088/0965-0393/23/5/055005.

    Article  Google Scholar 

  33. Lu H, Du S. A phenomenological thermodynamic model for the chemo-responsive shape memory effect in polymers based on Flory-Huggins solution theory. Polym Chem. 2014;5(4):1155–62. https://doi.org/10.1039/C3PY01256E.

    Article  CAS  Google Scholar 

  34. Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58(12):1379–408. https://doi.org/10.1016/j.addr.2006.09.004.

    Article  CAS  PubMed  Google Scholar 

  35. Glockner A. Treatment and prophylaxis of invasive candidiasis with anidulafungin, caspofungin and micafungin—review of the literature. Eur J Med Res. 2011;16(4):167–79. https://doi.org/10.1186/2047-783X-16-4-167.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ibrahim F, Gershkovich P, Sivak O, Wasan EK, Bartlett K, Wasan KM. Efficacy and toxicity of a tropically stable lipid-based formulation of amphotericin B (iCo-010) in a rat model of invasive candidiasis. Int J Pharm. 2012;436(1–2):318–23. https://doi.org/10.1016/j.ijpharm.2012.06.062.

    Article  CAS  PubMed  Google Scholar 

  37. Sant VP, Smith D, Leroux J-C. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release. 2004;97(2):301–12. https://doi.org/10.1016/j.jconrel.2004.03.026.

    Article  CAS  PubMed  Google Scholar 

  38. Torosantucci A, Bromuro C, Chiani P, De Bernardis F, Berti F, Galli C, et al. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med. 2005;202(5):597–606. https://doi.org/10.1084/jem.20050749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez-Ribot JL, Casanova M, Murgui A, Martinez JP. Antibody response to Candida albicans cell wall antigens. FEMS Immunol Med Microbiol. 2004;41(3):187–96. https://doi.org/10.1016/j.femsim.2004.03.012.

    Article  CAS  PubMed  Google Scholar 

  40. Clancy CJ, Nguyen ML, Cheng SJ, Huang H, Fan GX, Jaber RA, et al. Immunoglobulin G responses to a panel of Candida albicans antigens as accurate and early markers for the presence of systemic candidiasis. J Clin Microbiol. 2008;46(5):1647–54. https://doi.org/10.1128/jcm.02018-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li WQ, Hu XC, Zhang XH, Ge YP, Zhao SN, Hu Y, et al. Immunisation with the glycolytic enzyme enolase confers effective protection against Candida albicans infection in mice. Vaccine. 2011;29(33):5526–33. https://doi.org/10.1016/j.vaccine.2011.05.030.

    Article  CAS  PubMed  Google Scholar 

  42. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8. https://doi.org/10.1378/chest.118.2.503.

    Article  CAS  PubMed  Google Scholar 

  43. Ferrante A. Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity—increased fungicidal activity against torulopsis-glabrata and candida-albicans and associated increases in oxygen radical production and lysosomal-enzyme release. Infect Immun. 1989;57(7):2115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol. 2010;10(11):1325–34. https://doi.org/10.1016/j.intimp.2010.08.012.

    Article  CAS  PubMed  Google Scholar 

  45. Spellberg B, Ibrahim AS, Edwards JE, Filler SG. Mice with disseminated candidiasis die of progressive sepsis. J Infect Dis. 2005;192(2):336–43. https://doi.org/10.1086/430952.

    Article  PubMed  Google Scholar 

  46. Dantas AD, Day A, Ikeh M, Kos I, Achan B, Quinn J. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomol Ther. 2015;5(1):142–65. https://doi.org/10.3390/biom5010142.

    CAS  Google Scholar 

  47. MacCallum DM, Odds FC. Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses. 2005;48(3):151–61. https://doi.org/10.1111/j.1439-0507.2005.01121.x.

    Article  PubMed  Google Scholar 

  48. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Chong PP. Multi-step pathogenesis and induction of local immune response by systemic Candida albicans infection in an intravenous challenge mouse model. Int J Mol Sci. 2014;15(8):14848–67. https://doi.org/10.3390/ijms150814848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto Y, Klein TW, Friedman H. Involvement of mannose receptor in cytokine interleukin-1 beta (IL-1 beta), IL-6, and granulocyte-macrophage colony-stimulating factor responses, but not in chemokine macrophage inflammatory protein 1 beta (MIP-1 beta), MIP-2, and KC responses, caused by attachment of Candida albicans to macrophages. Infect Immun. 1997;65(3):1077–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Netea MG, Brown GD, Kullberg BJ, Gow NAR. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6(1):67–78. https://doi.org/10.1038/nrmicro1815.

    Article  CAS  PubMed  Google Scholar 

  51. MacCallum DM, Castillo L, Brown AJP, Gow NAR, Odds FC. Early-expressed chemokines predict kidney immunopathology in experimental disseminated Candida albicans infections. PLoS One. 2009;4(7):e6420. https://doi.org/10.1371/journal.pone.0006420.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Motoyoshi A, Nakajima H, Takano K, Moriyama M, Kannan Y, Nakamura Y. Effects of Amphotericin B on the expression of neurotoxic and neurotrophic factors in cultured microglia. Neurochem Int. 2008;52(6):1290–6. https://doi.org/10.1016/j.neuint.2008.01.012.

    Article  CAS  PubMed  Google Scholar 

  53. Tonomura Y, Yamamoto E, Kondo C, Itoh A, Tsuchiya N, Uehara T, et al. Amphotericin B-induced nephrotoxicity: characterization of blood and urinary biochemistry and renal morphology in mice. Hum Exp Toxicol. 2009;28(5):293–300. https://doi.org/10.1177/0960327109105404.

    Article  CAS  PubMed  Google Scholar 

  54. Italia JL, Yahya MM, Singh D, Kumar M. Biodegradable nanoparticles improve oral bioavailability of Amphotericin B and show reduced nephrotoxicity compared to intravenous FungizoneA (R). Pharm Res. 2009;26(6):1324–31. https://doi.org/10.1007/s11095-009-9841-2.

    Article  CAS  PubMed  Google Scholar 

  55. Sawaya BP, Briggs JP, Schnermann J. Amphotericin-b nephrotoxicity—the adverse consequences of altered membrane-properties. J Am Soc Nephrol. 1995;6(2):154–64.

    CAS  PubMed  Google Scholar 

  56. Radwan MA, AlQuadeib BT, Siller L, Wright MC, Horrocks B. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 2017;24(1):40–50. https://doi.org/10.1080/10717544.2016.1228715.

    Article  CAS  PubMed  Google Scholar 

  57. Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: effects of acyl chain length. J Control Release. 2003;87(1–3):23–32. https://doi.org/10.1016/s0168-3659(02)00347-4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Dr. Kawkab A. Ahmed (Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt) for her assistance in examining and interpreting histopathologic aspects this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany I. Raafat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.A., Radwan, R.R., Raafat, A.I. et al. Antifungal activity of oral (Tragacanth/acrylic acid) Amphotericin B carrier for systemic candidiasis: in vitro and in vivo study. Drug Deliv. and Transl. Res. 8, 191–203 (2018). https://doi.org/10.1007/s13346-017-0452-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0452-x

Keywords

Navigation