Skip to main content

Advertisement

Log in

Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Efforts to develop neurotrophic factors to restore function and protect dying neurons in chronic neurodegenerative diseases like Alzheimer’s (AD) and Parkinson’s (PD) have been attempted for decades. Despite abundant data establishing nonclinical proof-of-concept, significant delivery issues have precluded the successful translation of this concept to the clinic. The development of AAV2 viral vectors to deliver therapeutic genes has emerged as a safe and effective means to achieve sustained, long-term, targeted, bioactive protein expression. Thus, it potentially offers a practical means to solve those long-standing delivery/translational issues associated with neurotrophic factors. Data are presented for two AAV2 viral vector constructs expressing one of two different neurotrophic factors: nerve growth factor (NGF) and neurturin (NRTN). One (AAV2-NGF; aka CERE-110) is being developed as a treatment to improve the function and delay further degeneration of cholinergic neurons in the nucleus basalis of Meynert, the degeneration of which has been linked to cognitive deficits in AD. The other (AAV2-NRTN; aka CERE-120) is similarly being developed to treat the degenerating nigrostriatal dopamine neurons and major motor deficits in PD. The data presented here demonstrate: (1) 2-year, targeted, bioactive-protein in monkeys, (2) persistent, bioactive-protein throughout the life-span of the rat, and (3) accurately targeted bioactive-protein in aged rats, with (4) no safety issues or antibodies to the protein detected. They also provide empirical guidance to establish parameters for human dosing and collectively support the idea that gene transfer may overcome key delivery obstacles that have precluded successful translation of neurotrophic factors to the clinic. More specifically, they also enabled the AAV-NGF and AAV-NRTN programs to advance into ongoing multi-center, double-blind clinical trials in AD and PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Snider WD, Johnson Jr EM. Neurotrophic molecules. Ann Neurol. 1989;26(4):489–506.

    Article  PubMed  CAS  Google Scholar 

  2. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Ann Rev Neurosci. 2001;24:677–736.

    Article  PubMed  CAS  Google Scholar 

  3. Sofroniew MV, Howe CL, Mobley WC. Nerve growth factor signaling, neuroprotection, and neural repair. Ann Rev Neurosci. 2001;24:1217–81.

    Article  PubMed  CAS  Google Scholar 

  4. Hefti F, Hartikka J, Knusel B. Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol Aging. 1989;10(5):515–33.

    Article  PubMed  CAS  Google Scholar 

  5. Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature. 1987;329(6134):65–8. Sep 3–9.

    Article  PubMed  CAS  Google Scholar 

  6. Bartus RT. Neurotrophic factors: can the degenerating brain be induced to heal itself? Neurobiol Aging. 1989;10(5):513.

    Article  PubMed  CAS  Google Scholar 

  7. Wellmer A, Misra VP, Sharief MK, Kopelman PG, Anand P. A double-blind placebo-controlled clinical trial of recombinant human brain-derived neurotrophic factor (rhBDNF) in diabetic polyneuropathy. J Peripher Nerv Syst. 2001;6(4):204–10.

    Article  PubMed  CAS  Google Scholar 

  8. Miller RG, Petajan JH, Bryan WW, Armon C, Barohn RJ, Goodpasture JC, et al. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann Neurol. 1996;39(2):256–60.

    Article  PubMed  CAS  Google Scholar 

  9. Jonhagen ME, Nordberg A, Amberla K, Backman L, Ebendal T, Meyerson B, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998;9(5):246–57.

    Article  CAS  Google Scholar 

  10. Penn RD, Kroin JS, York MM, Cedarbaum JM. Intrathecal ciliary neurotrophic factor delivery for treatment of amyotrophic lateral sclerosis (phase I trial). Neurosurgery. 1997;40(1):94–9. discussion 9–100.

    PubMed  CAS  Google Scholar 

  11. Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA. Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology. 1998;51(3):695–702.

    PubMed  CAS  Google Scholar 

  12. Apfel SC, Schwartz S, Adornato BT, Freeman R, Biton V, Rendell M, et al. Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. rhNGF Clinical Investigator Group. JAMA. 2000;284(17):2215–21.

    Article  PubMed  CAS  Google Scholar 

  13. Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol. 2002;50:393–413.

    Article  PubMed  CAS  Google Scholar 

  14. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws Jr ER, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60(1):69–73.

    PubMed  CAS  Google Scholar 

  15. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59(3):459–66.

    Article  PubMed  CAS  Google Scholar 

  16. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003;9(5):589–95.

    Article  PubMed  CAS  Google Scholar 

  17. Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg. 2005;102(2):216–22.

    Article  PubMed  CAS  Google Scholar 

  18. Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol. 1999;46(3):419–24.

    Article  PubMed  CAS  Google Scholar 

  19. Day-Lollini PA, Stewart GR, Taylor MJ, Johnson RM, Chellman GJ. Hyperplastic changes within the leptomeninges of the rat and monkey in response to chronic intracerebroventricular infusion of nerve growth factor. Exp Neurol. 1997;145(1):24–37.

    Article  PubMed  CAS  Google Scholar 

  20. Sherer TB, Fiske BK, Svendsen CN, Lang AE, Langston JW. Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord. 2006;21(2):136–41.

    Article  PubMed  Google Scholar 

  21. Salvatore MF, Ai Y, Fischer B, Zhang AM, Grondin RC, Zhang Z, et al. Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol. 2006;202:497–505.

    Article  PubMed  CAS  Google Scholar 

  22. Eriksdotter Jonhagen M, Nordberg A, Amberla K, Backman L, Ebendal T, Meyerson B, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998;9(5):246–57.

    Article  PubMed  CAS  Google Scholar 

  23. Backman C, Rose GM, Bartus RT, Hoffer BJ, Mufson EJ, Granholm AC. Carrier mediated delivery of NGF: alterations in basal forebrain neurons in aged rats revealed using antibodies against low and high affinity NGF receptors. J Comp Neurol. 1997;387(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  24. Backman C, Rose GM, Hoffer BJ, Henry MA, Bartus RT, Friden P, et al. Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J Neurosci. 1996;16(17):5437–42.

    PubMed  CAS  Google Scholar 

  25. Charles V, Mufson EJ, Friden PM, Bartus RT, Kordower JH. Atrophy of cholinergic basal forebrain neurons following excitotoxic cortical lesions is reversed by intravenous administration of an NGF conjugate. Brain Res. 1996;728(2):193–203.

    Article  PubMed  CAS  Google Scholar 

  26. Bartus RT. The blood–brain barrier as a target for pharmacological modulation. Current opinion in drug discovery & development. 1999;2(2):152–67.

    CAS  Google Scholar 

  27. McMahon SB. NGF as a mediator of inflammatory pain. Philos Trans R Soc Lond. 1996;351(1338):431–40.

    Article  CAS  Google Scholar 

  28. Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Ann Rev Neurosci. 2006;29:507–38.

    Article  PubMed  CAS  Google Scholar 

  29. Bartus RT, Tracy MA, Emerich DF, Zale SE. Sustained delivery of proteins for novel therapeutic agents. Science (New York, NY. 1998;281(5380):1161–2.

    Article  CAS  Google Scholar 

  30. Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nature Biotech. 1998;16(2):153–7.

    Article  CAS  Google Scholar 

  31. Nauta HJ, Wehman JC, Koliatsos VE, Terrell MA, Chung K. Intraventricular infusion of nerve growth factor as the cause of sympathetic fiber sprouting in sensory ganglia. J Neurosurg. 1999;91(3):447–53.

    Article  PubMed  CAS  Google Scholar 

  32. Hovland Jr DN, Boyd RB, Butt MT, Engelhardt JA, Moxness MS, Ma MH, et al. Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF in rhesus monkeys. Tox Path. 2007;35(7):1013–29.

    Article  CAS  Google Scholar 

  33. McCown TJ. Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther. 2011;11(3):181–8.

    PubMed  CAS  Google Scholar 

  34. Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther. 2010;18(8):1458–61.

    Article  PubMed  CAS  Google Scholar 

  35. Bartus RT, Dean 3rd RL. Pharmaceutical treatment for cognitive deficits in Alzheimer’s disease and other neurodegenerative conditions: exploring new territory using traditional tools and established maps. Psychopharmacology. 2009;202(1–3):15–36.

    Article  PubMed  CAS  Google Scholar 

  36. Bartus RT, Dean 3rd RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science (New York, NY. 1982;217(4558):408–14.

    Article  CAS  Google Scholar 

  37. Bartus RT. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol. 2000;163:495–529.

    Article  PubMed  CAS  Google Scholar 

  38. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. The New England Journal of Medicine. 1998;339(15):1044–53.

    Article  PubMed  CAS  Google Scholar 

  39. Gasmi M, Herzog CD, Brandon EP, Cunningham JJ, Ramirez GA, Ketchum ET, et al. Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson’s disease. Mol Ther. 2007;15(1):62–8.

    Article  PubMed  CAS  Google Scholar 

  40. Gasmi M, Brandon EP, Herzog CD, Wilson A, Bishop KM, Hofer EK, et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis. 2007;27(1):67–76.

    Article  PubMed  CAS  Google Scholar 

  41. Bartus RT, Herzog CD, Bishop K, Ostrove JM, Tuszynski M, Kordower JH, et al. Issues regarding gene therapy products for Parkinson’s disease: the development of CERE-120 (AAV-NTN) as one reference point. Parkinsonism Relat Disord. 2007;13 Suppl 3:S469–77.

    Article  PubMed  Google Scholar 

  42. Bishop KM, Hofer EK, Mehta A, Ramirez A, Sun L, Tuszynski M, et al. Therapeutic potential of CERE-110 (AAV2-NGF): targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Exp Neurol. 2008;211(2):574–84.

    Article  PubMed  CAS  Google Scholar 

  43. Kordower JH, Herzog CD, Dass B, Bakay RA, Stansell 3rd J, Gasmi M, et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol. 2006;60(6):706–15.

    Article  PubMed  CAS  Google Scholar 

  44. Herzog CD, Dass B, Holden JE, Stansell 3rd J, Gasmi M, Tuszynski MH, et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord. 2007;22(8):1124–32.

    Article  PubMed  Google Scholar 

  45. Bartus RT, Brown L, Wilson A, Kruegel B, Siffert J, Johnson Jr EM, et al. Properly scaled and targeted AAV-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson’s disease. Neurobiol Dis. 2011. doi:10.1016/j.nbd.2011.05.026.

  46. Herzog CD, Dass B, Gasmi M, Bakay R, Stansell JE, Tuszynski M, et al. Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. Mol Ther. 2008;16(10):1737–44.

    Article  PubMed  CAS  Google Scholar 

  47. Pettersen JC, Morrissey RL, Saunders DR, Pavkov KL, Luempert 3rd LG, Turnier JC, et al. A 2-year comparison study of Crl:CD BR and Hsd:Sprague-Dawley SD rats. Fundam Appl Toxicol. 1996;33(2):196–211.

    Article  PubMed  CAS  Google Scholar 

  48. Moser VC. The functional observational battery in adult and developing rats. Neurotoxicology. 2000;21(6):989–96.

    PubMed  CAS  Google Scholar 

  49. Ross JF. Tier 1 neurological assessment in regulated animal safety studies. In: Massaro EJ, editor. Neurotoxicology handbook. Totowa: Humana; 2002. p. 461–501.

    Chapter  Google Scholar 

  50. Emerich DF, McDermott P, Krueger P, Banks M, Zhao J, Marszalkowski J, et al. Locomotion of aged rats: relationship to neurochemical but not morphological changes in nigrostriatal dopaminergic neurons. Brain Res Bull. 1993;32(5):477–86.

    Article  PubMed  CAS  Google Scholar 

  51. Hebert MA, Gerhardt GA. Normal and drug-induced locomotor behavior in aging: comparison to evoked DA release and tissue content in fischer 344 rats. Brain Res. 1998;797(1):42–54.

    Article  PubMed  CAS  Google Scholar 

  52. Hebert MA, Gerhardt GA. Age-related changes in the capacity, rate, and modulation of dopamine uptake within the striatum and nucleus accumbens of Fischer 344 rats: an in vivo electrochemical study. J Pharmacol Exp Ther. 1999;288(2):879–87.

    PubMed  CAS  Google Scholar 

  53. Marks Jr WJ, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 2008;7(5):400–8.

    Article  PubMed  Google Scholar 

  54. Herzog CD, Brown L, Gammon D, Kruegel B, Lin R, Wilson A, et al. Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support CERE-120 for Parkinson’s disease. Neurosurgery. 2009;64(4):602–12.

    Article  PubMed  Google Scholar 

  55. Bartus RT. Drug delivery to the brain: the problem lurking behind the problem? Neurobiol Aging. 1989;10(Special Issue):621.

    Article  Google Scholar 

  56. Bartus R. Commentary on animal models of Alzheimer’s and Parkinson’s disease. Integrative Psychiat. 1986;4:74–5.

    Google Scholar 

  57. Bartus RT. Treatment approaches to AD/SDAT: insight and direction from animal models. Clin Neuropharmacol. 1984;7(1):338–9.

    Google Scholar 

  58. Bartus RT, Dean RL, Flicker C, Beer B. Behavioral and pharmacological studies using animal models of aging: implications for studying and treating dementia of Alzheimer’s type. Banbury Report 1515: Biological Aspects of Alzheimer’s Disease, Cold Spring Harbor Laboratory. 1983:207–18.

  59. Kordower JH, Winn SR, Liu YT, Mufson EJ, Sladek Jr JR, Hammang JP, et al. The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. PNAS. 1994;91(23):10898–902.

    Article  PubMed  CAS  Google Scholar 

  60. Gage FH, Bjorklund A. Neural grafting in the aged rat brain. Annu Rev Physiol. 1986;48:447–59.

    Article  PubMed  CAS  Google Scholar 

  61. Smith DE, Roberts J, Gage FH, Tuszynski MH. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. PNAS. 1999;96(19):10893–8.

    Article  PubMed  CAS  Google Scholar 

  62. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science (New York, NY. 2000;290(5492):767–73.

    Article  CAS  Google Scholar 

  63. McPhee SW, Janson CG, Li C, Samulski RJ, Camp AS, Francis J, et al. Immune responses to AAV in a phase I study for Canavan disease. J Gene Med. 2006;8(5):577–88.

    Article  PubMed  CAS  Google Scholar 

  64. Crystal RG, Sondhi D, Hackett NR, Kaminsky SM, Worgall S, Stieg P, et al. Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of children with late infantile neuronal ceroid lipofuscinosis. Human Gene Ther. 2004;15(11):1131–54.

    Google Scholar 

  65. During MJ, Kaplitt MG, Stern MB, Eidelberg D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Human Gene Ther. 2001;12(12):1589–91.

    CAS  Google Scholar 

  66. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet. 2007;369(9579):2097–105.

    Article  PubMed  CAS  Google Scholar 

  67. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–19.

    Article  PubMed  CAS  Google Scholar 

  68. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology. 2008;70(21):1980–3.

    Article  PubMed  CAS  Google Scholar 

  69. Marks Jr WJ, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9(12):1164–72.

    Article  PubMed  CAS  Google Scholar 

  70. Arvanitakis Z, Tuszynski MH, Bakay RA, Potkin SG, Bartus RT, Bennett D. A phase 1 clinical trial of CERE-110 (AAV-NGF) gene delivery in Alzheimer’s Disease [Abstract]. American Academy of Neurology. 2006

  71. Lang AE, Lozano AM. Parkinson’s disease. Second of two parts. The New England Journal of Medicine. 1998;339(16):1130–43.

    Article  PubMed  CAS  Google Scholar 

  72. Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology. 2009;72(21 Suppl 4):S1–136.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of Jillyne R. Zeller, Robert B. Boyd, and the staff of Northern Biomedical Research, Inc. (Muskegon, Michigan) for conducting, under contract and our protocol, the dosing, in-life, and necropsy components of Experiment 1. We would also like to thank Eva K. Hofer, Marie Printz, Brian Kruegel, Katie Auble, Tiffany Baumann, Dawn Gammon, Richard Lin, and Christopher Wilson of Ceregene, Inc. for the expert technical assistance and Jeffrey Ostrove for the continuous support as well as comments on earlier drafts. We are grateful to Jim Conner (UCSD) for providing the NGF antibody for immunohistochemistry in Experiment 1. Finally, the assistance of Anna-Marie Baca in the preparation and submission of this paper is appreciated and acknowledged. Portions of Experiment 1 were supported by SBIR grants 1R43NS44652-1 and 1R43NS44652-2 to Ceregene.

Authors’ disclosure statement

All authors are current or past employees of Ceregene, Inc. except JHK, who is a member of the Ceregene, Inc. scientific advisory board and has a financial interest in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond T. Bartus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, C.D., Bishop, K.M., Brown, L. et al. Gene transfer provides a practical means for safe, long-term, targeted delivery of biologically active neurotrophic factor proteins for neurodegenerative diseases. Drug Deliv. and Transl. Res. 1, 361–382 (2011). https://doi.org/10.1007/s13346-011-0037-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0037-z

Keywords

Navigation