Skip to main content

Advertisement

Log in

Pharmaceutical treatment for cognitive deficits in Alzheimer’s disease and other neurodegenerative conditions: exploring new territory using traditional tools and established maps

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Over 30 years ago, we began to develop a nonhuman primate model to study cognitive deficits of age-related neurodegenerative diseases and their neuroanatomical–neurochemical underpinnings for purposes of translating this work toward first pharmacotherapies. This effort produced several notable findings that eventually received consensus support, which we have been asked to review.

Objectives

A discussion of these findings, in the context of issues and obstacles confronted and principles applied, might facilitate the development of even more effective models and treatments, not only for Alzheimer’s disease (AD) but for many other disorders involving cognitive deficits.

Results

Collectively, our research provided first evidence of the following: aged primates can be used as ‘models’ for human age-related neurodegenerative diseases; key cognitive deficits in early AD share important conceptual similarities to deficits in both aged monkeys as well as non-demented humans (e.g., age-associated memory impairment and mild cognitive impairment); pharmacological intervention can reduce age-related cognitive impairments in animals that are conceptually similar to those seen in human diseases, including AD; cholinergics would likely be the first approved therapeutics for AD; and that many other classes of drugs would not likely succeed.

Conclusions

Despite the early promise shown by behavioral/functional approaches to develop treatment strategies, the dramatic shift in focus away from behavioral outcomes in animal neurodegenerative research that began 20 years ago has compromised further progress and continues to impede our ability to understand how these diseases impair human cognition and what pathways might lead to effective therapies. Principles applied successfully in the past should provide guidance for facilitating efforts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agnoli A, Martucci N, Manna V, Conti L, Fioravanti M (1983) Effect of cholinergic and anticholinergic drugs on short-term memory in Alzheimer’s dementia: a neuropsychological and computerized electroencephalographic study. Clin Neuropharmacol 6:311–323

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1985a) Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230:1273–1276

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1985b) Catecholamines and cognitive decline in aged nonhuman primates. Ann N Y Acad Sci 444:218–234

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1987) Noradrenergic mechanisms in age-related cognitive decline. J Neural Transm Suppl 24:317–324

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Goldman-Rakic PS (1988) The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8:4287–4298

    PubMed  CAS  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 116:143–151

    CAS  Google Scholar 

  • Arnsten AF, Cai JX, Steere JC, Goldman-Rakic PS (1995) Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: the effects of quinpirole on memory and motor performance in monkeys. J Neurosci 15:3429–3439

    PubMed  CAS  Google Scholar 

  • Arvanitakis Z, Tuszynski MH, Bakay RA, Potkin SG, Bartus RT, Bennett D (2007) A phase 1 clinical trial of CERE-110 (AAV-NGF) gene delivery in Alzheimer’s disease [Abstract P05.071]. American Academy of Neurology Annual Meeting, Boston, MA

  • Askew WE, Kimball AP, Ho BT (1974) Effect of tetrahydrocannabinols on brain acetylcholine. Brain Res 69:375–378

    PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders (DSM-IV), 4th edn. American Psychiatric Association, Arlington, VA

  • Bachurin S, Bukatina E, Lermontova N, Tkachenko S, Afanasiev A, Grigoriev V, Grigorieva I, Ivanov Y, Sablin S, Zefirov N (2001) Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci 939:425–435

    PubMed  CAS  Google Scholar 

  • Barnes CA, Nadel L, Honig WK (1980) Spatial memory deficit in senescent rats. Can J Psychol 34:29–39

    PubMed  CAS  Google Scholar 

  • Barnes CA, McNaughton BL, O’Keefe J (1983) Loss of place specificity in hippocampal complex spike cells of senescent rat. Neurobiol Aging 4:113–119

    PubMed  CAS  Google Scholar 

  • Barten DM, Albright CF (2008) Therapeutic Strategies for Alzheimer’s Disease. Mol Neurobiol 37:171–186

    PubMed  CAS  Google Scholar 

  • Bartus RT (1978a) Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: Effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacol Biochem Behav 9:833–836

    PubMed  CAS  Google Scholar 

  • Bartus RT (1978b) Short-term memory in the Rhesus monkey: effects of dopamine blockade via acute haloperidol administration. Pharmacol Biochem Behav 9:353–357

    PubMed  CAS  Google Scholar 

  • Bartus RT (1979a) Effects of aging on visual memory, sensory processing, and discrimination learning in a nonhuman primate. In: Ordy JM, Brizzee K (eds) Aging (sensory systems and communication in the elderly). Raven, New York, pp 85–113

    Google Scholar 

  • Bartus RT (1979b) Four stimulants of the central nervous system: effects on short-term memory in young versus aged monkeys. J Am Geriatr Soc 27:289–297

    PubMed  CAS  Google Scholar 

  • Bartus RT (1979c) Physostigmine and recent memory: effects in young and aged nonhuman primates. Science 206:1087–1089

    PubMed  CAS  Google Scholar 

  • Bartus RT (1980) Cholinergic drug effects on memory and cognition in animals. In: Poon L (ed) Aging in the 1980’s: psychological issues. American Psychological Association, Washington, DC, pp 168–184

    Google Scholar 

  • Bartus RT (1982) Effects of cholinergic agents on learning and memory in animal models of aging. In: Corkin S, Davis K, Growdon MJ, Usdin E, Wurtman R (eds) Alzheimer’s disease: a report of progress (aging). Raven, New York, pp 271–280

    Google Scholar 

  • Bartus RT (1986) Drugs to treat age-related cognitive disorders: on the threshold of a new era in the pharmaceutical industry? In: Crook T (ed) Treatment development strategies for Alzheimer’s disease. Mark Powley Associates, Madison, CT, pp 71–90

    Google Scholar 

  • Bartus RT (1989) The impending Alzheimer’s crisis: can we be saved by the revolution? Neurobiol Aging 10:383–384

    PubMed  CAS  Google Scholar 

  • Bartus RT (1990) Drugs to treat age-related neurodegenerative problems. The final frontier of medical science? J Am Geriatr Soc 38:680–695

    PubMed  CAS  Google Scholar 

  • Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL (1985) Developing and utilizing animal models in the search for an effective treatment for age-related memory disturbances. In: Gottfries CG (ed) Normal aging, Alzheimer’s disease and senile dementia: aspects on etiology pathogenesis, diagnosis and treatment. University of Brussels Press, Brussels, pp 231–267

    Google Scholar 

  • Bartus RT, Dean RL (1988a) Effects of cholinergic and adrenergic enhancing drugs on memory in aged monkeys. In: Giacobini E, Becker R (eds) Current research in Alzheimer therapy. Taylor and Francis, New York, NY, pp 179–190

    Google Scholar 

  • Bartus RT, Dean RL (1988b) Lack of efficacy of clonidine on memory in aged cebus monkeys. Neurobiol Aging 9:409–411

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL (1988c) Tetrahydroaminoacridine, 3,4 diaminopyridine and physostigmine: direct comparison of effects on memory in aged primates. Neurobiol Aging 9:351–356

    PubMed  CAS  Google Scholar 

  • Bartus RT, Johnson HR (1976) Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol Biochem Behav 5:39–46

    PubMed  CAS  Google Scholar 

  • Bartus RT, Fleming D, Johnson HR (1978) Aging in the Rhesus monkey: debilitating effects on short-term memory. J Gerontol 33:858–871

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Fleming DL (1979) Aging in the Rhesus monkey: effects on visual discrimination learning and reversal learning. J Gerontol 34:209–219

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B (1980a) Memory deficits in aged Cebus monkeys and facilitation with central cholinomimetics. Neurobiol Aging 1:145–152

    CAS  Google Scholar 

  • Bartus RT, Dean RL, Goas JA, Lippa AS (1980b) Age-related changes in passive avoidance retention: modulation with dietary choline. Science 209:301–303

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982a) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B (1982b) Neuropeptide effects on memory in aged monkeys. Neurobiol Aging 3:61–68

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B (1983a) An evaluation of drugs for improving memory in aged monkeys: implications for clinical trials in humans. Psychopharmacol Bull 19:168–184

    PubMed  CAS  Google Scholar 

  • Bartus RT, Flicker C, Dean RL (1983b) Logical principles for the development of animal models of age-related impairments. In: Crook T, Ferris SH, Bartus RT (eds) Assessment for geriatric psychopharmacology. Mark Powley Assoc., New Caanan, CT, pp 263–299

    Google Scholar 

  • Bartus RT, Dean RL, Pontecorvo MJ, Flicker C (1985a) The cholinergic hypothesis: a historical overview, current perspective, and future directions. Ann N Y Acad Sci 444:332–358

    PubMed  CAS  Google Scholar 

  • Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK (1985b) Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav 23:125–135

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Fisher SK (1986) Cholinergic treatment for age-related memory disturbances: dead or barely coming of age? In: Crook T, Bartus RT, Gershon S (eds) Treatment development strategies for Alzheimer’s disease. M. Powley Assoc., Madison, CT, pp 421–450

    Google Scholar 

  • Bartus RT, Fleming D, Johnson HR (1995) Landmarks: aging in the rhesus monkey: debilitating effects on short-term memory. J NIH Res 7:69–77

    Google Scholar 

  • Baxter MG, Voytko ML (1996) Spatial orienting of attention in adult and aged rhesus monkeys. Behav Neurosci 110:898–904

    PubMed  CAS  Google Scholar 

  • Beatty WW, Butters N, Janowsky DS (1986) Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav Neural Biol 45:196–211

    PubMed  CAS  Google Scholar 

  • Bennett BM, Reynolds JN, Prusky GT, Douglas RM, Sutherland RJ, Thatcher GR (2007) Cognitive deficits in rats after forebrain cholinergic depletion are reversed by a novel NO mimetic nitrate ester. Neuropsychopharmacology 32:505–513

    PubMed  CAS  Google Scholar 

  • Bierer LM, Aisen PS, Davidson M, Ryan TM, Schmeidler J, Davis KL (1994) A pilot study of clonidine plus physostigmine in Alzheimer’s disease. Dementia 5:243–246

    PubMed  CAS  Google Scholar 

  • Bishop KM, Hofer EK, Mehta A, Ramirez A, Sun L, Tuszynski M, Bartus RT (2008) Therapeutic potential of CERE-110 (AAV2-NGF): targeted, stable, and sustained NGF delivery and trophic activity on rodent basal forebrain cholinergic neurons. Exp Neurol 211:574–584

    PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Terry AV Jr (1992) Effects of concomitant cholinergic and adrenergic stimulation on learning and memory performance by primates. Life Sci 51:PL 7–PL 12

    CAS  Google Scholar 

  • Business Wire (2004) Ampakine fixed-dose CX516 cross national study to mild cognitive impairment— MCI— fails to meet primary endpoint. February 17

  • Caine ED, Weingartner H, Ludlow CL, Cudahy EA, Wehry S (1981) Qualitative analysis of scopolamine-induced amnesia. Psychopharmacology (Berl) 74:74–80

    CAS  Google Scholar 

  • Castner SA, Goldman-Rakic PS (2004) Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci 24:1446–1450

    PubMed  CAS  Google Scholar 

  • Christie JE, Shering A, Ferguson J, Glen AI (1981) Physostigmine and arecoline: effects of intravenous infusions in Alzheimer presenile dementia. Br J Psychiatry 138:46–50

    PubMed  CAS  Google Scholar 

  • Chudasama Y, Dalley JW, Nathwani F, Bouger P, Robbins TW (2004) Cholinergic modulation of visual attention and working memory: dissociable effects of basal forebrain 192-IgG-saporin lesions and intraprefrontal infusions of scopolamine. Learn Mem 11:78–86

    PubMed  Google Scholar 

  • Cincotta SL, Yorek MS, Moschak TM, Lewis SR, Rodefer JS (2008) Selective nicotinic acetylcholine receptor agonists: potential therapies for neuropsychiatric disorders with cognitive dysfunction. Curr Opin Investig Drugs 9:47–56

    PubMed  CAS  Google Scholar 

  • Clark EO, Glanzer M, Turndorf H (1979) The pattern of memory loss resulting from intravenously administered diazepam. Arch Neurol 36:296–300

    PubMed  CAS  Google Scholar 

  • Clemmesen L, Mikkelsen PL, Lund H, Bolwig TG, Rafaelsen OJ (1984) Assessment of the anticholinergic effects of antidepressants in a single-dose cross-over study of salivation and plasma levels. Psychopharmacology (Berl) 82:348–354

    CAS  Google Scholar 

  • Cork LC, Masters C, Beyreuther K, Price DL (1990) Development of senile plaques. Relationships of neuronal abnormalities and amyloid deposits. Am J Pathol 137:1383–1392

    PubMed  CAS  Google Scholar 

  • Crook T, Bartus RT, Ferris SH, Whitehouse P, Cohen GD, Gershon S (1986) Age associated memory impairment: Proposed diagnostic criteria and measures of clinical change—report of a National Institute of Mental Health Work Group. Dev Neuropsychol 2:261–276

    Google Scholar 

  • Crook T, Bahar H, Sudilovsky A (1987) Age-associated memory impairment: diagnostic criteria and treatment strategies. Int J Neurol 21–22:73–82

    PubMed  Google Scholar 

  • Crook T, Wilner E, Rothwell A, Winterling D, McEntee W (1992) Noradrenergic intervention in Alzheimer’s disease. Psychopharmacol Bull 28:67–70

    PubMed  CAS  Google Scholar 

  • Crow TJ, Grove-White IG, Kelman GR (1971) Differential effect of atropine and hyoscine on human learning capacity. Br J Pharmacol 43:464P

    PubMed  CAS  Google Scholar 

  • Curran HV, Sakulsriprong M, Lader M (1988) Antidepressants and human memory: an investigation of four drugs with different sedative and anticholinergic profiles. Psychopharmacology (Berl) 95:520–527

    CAS  Google Scholar 

  • Darley CF, Tinklenberg JR, Hollister TE, Atkinson RC (1973) Marihuana and retrieval from short-term memory. Psychopharmacologia 29:231–238

    PubMed  CAS  Google Scholar 

  • Davis RT (1978) Old monkey behavior. Exp Gerontol 13:237–250

    PubMed  CAS  Google Scholar 

  • Davis KL, Mohs RC, Tinklenberg JR (1979) Enhancement of memory by physostigmine. N Engl J Med 301:946

    PubMed  CAS  Google Scholar 

  • Davis KL, Hollander E, Davidson M, Davis BM, Mohs RC, Horvath TB (1987) Induction of depression with oxotremorine in patients with Alzheimer’s disease. Am J Psychiatry 144:468–471

    PubMed  CAS  Google Scholar 

  • Davis KL, Thal LJ, Gamzu ER, Davis CS, Woolson RF, Gracon SI, Drachman DA, Schneider LS, Whitehouse PJ, Hoover TM et al (1992) A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. The Tacrine Collaborative Study Group. N Engl J Med 327:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • de Bruin N, Pouzet B (2006) Beneficial effects of galantamine on performance in the object recognition task in Swiss mice: deficits induced by scopolamine and by prolonging the retention interval. Pharmacol Biochem Behav 85:253–260

    PubMed  Google Scholar 

  • Dean RL, Bartus RT (1982) Drug-induced memory impairments in nonhuman primates. Soc Neurosci Abst 8:322

    Google Scholar 

  • Dean RL, Bartus RT (1988) Behavioral models of aging in nonhuman primates. In: Iversen LL, Iversen SD, Snyder SH (eds) Behavioral pharmacology (handbook of psychopharmacology). Plenum, New York, NY, pp 325–392

    Google Scholar 

  • Dean RL 3rd, Scozzafava J, Goas JA, Regan B, Beer B, Bartus RT (1981) Age-related differences in behavior across the life span of the C57BL/6J mouse. Exp Aging Res 7:427–451

    PubMed  Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174:788–794

    PubMed  CAS  Google Scholar 

  • Devi G, Schultz S, Khosrowshahi L, Agnew A, Olali E, Devi G (2008) A retrospective chart review of the tolerability and efficacy of intravenous immunoglobulin in the treatment of Alzheimer’s disease. J Am Geriatr Soc 56:772–774

    PubMed  Google Scholar 

  • Dodel RC, Du Y, Depboylu C, Hampel H, Frolich L, Haag A, Hemmeter U, Paulsen S, Teipel SJ, Brettschneider S, Spottke A, Nolker C, Moller HJ, Wei X, Farlow M, Sommer N, Oertel WH (2004) Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:1472–1474

    PubMed  CAS  Google Scholar 

  • Domino EF (1981) Cannabinoids and the cholinergic system. J Clin Pharmacol 21:249S–255S

    PubMed  CAS  Google Scholar 

  • Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, Bachurin SO, Seely L, Hung D (2008) Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet 372:207–215

    PubMed  CAS  Google Scholar 

  • Drachman DA (1977) Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology 27:783–790

    PubMed  CAS  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30:113–121

    PubMed  CAS  Google Scholar 

  • Dundee JW, George KA (1976) The amnesic action of diazepam, flunitrazepam and lorazepam in man. Acta Anaesthesiol Belg 27(suppl):3–11

    PubMed  Google Scholar 

  • Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW (1997) Effects of methylphenidate on spatial working memory and planning in healthy young adults. Psychopharmacology (Berl) 131:196–206

    CAS  Google Scholar 

  • Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF, Vitetta L, Nathan PJ (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9:175–189

    PubMed  CAS  Google Scholar 

  • Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401:253–265

    PubMed  CAS  Google Scholar 

  • Emmenegger H, Meier-Ruge W (1968) The actions of Hydergine on the brain. A histochemical, circulatory and neurophysiological study. Pharmacology 1:65–78

    PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31:47–59

    PubMed  CAS  Google Scholar 

  • Eriksdotter Jonhagen M, Nordberg A, Amberla K, Backman L, Ebendal T, Meyerson B, Olson L, Seiger, Shigeta M, Theodorsson E, Viitanen M, Winblad B, Wahlund LO (1998) Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 9:246–257

    PubMed  CAS  Google Scholar 

  • Farlow MR (2002) Do cholinesterase inhibitors slow progression of Alzheimer’s disease? Int J Clin Pract Suppl 127:37–44

    PubMed  CAS  Google Scholar 

  • Farlow MR, Small GW, Quarg P, Krause A (2005) Efficacy of rivastigmine in Alzheimer’s disease patients with rapid disease progression: results of a meta-analysis. Dement Geriatr Cogn Disord 20:192–197

    PubMed  CAS  Google Scholar 

  • Ferris SH, Sathananthan G, Reisberg B, Gershon S (1979) Long-term choline treatment of memory-impaired elderly patients. Science 205:1039–1040

    PubMed  CAS  Google Scholar 

  • Flicker C, Dean RL, Watkins DL, Fisher SK, Bartus RT (1983) Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol Biochem Behav 18:973–981

    PubMed  CAS  Google Scholar 

  • Flicker C, Bartus RT, Crook TH, Ferris SH (1984) Effects of aging and dementia upon recent visuospatial memory. Neurobiol Aging 5:275–283

    PubMed  CAS  Google Scholar 

  • Flicker C, Ferris SH, Crook T, Bartus RT (1986) The effects of aging and dementia on concept formation as measured on an object-sorting task. Dev Neuropsychol 2:65–72

    Article  Google Scholar 

  • Flicker C, Ferris SH, Crook T, Bartus RT (1987) A visual recognition memory test for the assessment of cognitive function in aging and dementia. Exp Aging Res 13:127–132

    PubMed  CAS  Google Scholar 

  • Flicker C, Ferris SH, Reisberg B (1991) Mild cognitive impairment in the elderly: predictors of dementia. Neurology 41:1006–1009

    PubMed  CAS  Google Scholar 

  • Frcka G, Lader M (1988) Psychotropic effects of repeated doses of enalapril, propranolol and atenolol in normal subjects. Br J Clin Pharmacol 25:67–73

    PubMed  CAS  Google Scholar 

  • Gershon S (1984) Comparative side effect profiles of trazodone and imipramine: special reference to the geriatric population. Psychopathology 17(Suppl 2):39–50

    Article  PubMed  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    PubMed  CAS  Google Scholar 

  • Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC, Johnson SA, Lynch G (2001) A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol 21:484–487

    PubMed  CAS  Google Scholar 

  • Goff DC, Lamberti JS, Leon AC, Green MF, Miller AL, Patel J, Manschreck T, Freudenreich O, Johnson SA (2008) A placebo-controlled add-on trial of the ampakine, CX516, for cognitive deficits schizophrenia. Neuropsychopharmacol 33:465–472

    CAS  Google Scholar 

  • Gold P, McGaugh J (1975) Changes in learning and memory during aging. In: Ordy JM, Brizzee KR (eds) Neurobiology of aging: an interdisciplinary life-span approach (Advances in behavioral biology). Plenum, New York, NY, pp 145–148

    Google Scholar 

  • Goodnick P, Gershon S (1984) Chemotherapy of cognitive disorders in geriatric subjects. J Clin Psychiatry 45:196–209

    PubMed  CAS  Google Scholar 

  • Gottfries CG (1988) Alzheimer’s disease. A critical review. Compr Gerontol 2:47–62

    CAS  Google Scholar 

  • Gracon SI, Knapp MJ, Berghoff WG, Pierce M, DeJong R, Lobbestael SJ, Symons J, Dombey SL, Luscombe FA, Kraemer D (1998) Safety of tacrine: clinical trials, treatment IND, and postmarketing experience. Alzheimer Dis Assoc Disord 12:93–101

    PubMed  CAS  Google Scholar 

  • Green A, Ellis KA, Ellis J, Bartholomeusz CF, Ilic S, Croft RJ, Phan KL, Nathan PJ (2005) Muscarinic and nicotinic receptor modulation of object and spatial n-back working memory in humans. Pharmacol Biochem Behav 81:575–584

    PubMed  CAS  Google Scholar 

  • Grove-White IG, Kelman GR (1971) Effect of methohexitone, diazepam and sodium 4-hydroxybutyrate on short-term memory. Br J Anaesth 43:113–116

    PubMed  CAS  Google Scholar 

  • Hajjar I, Schumpert J, Hirth V, Wieland D, Eleazer GP (2002) The impact of the use of statins on the prevalence of dementia and the progression of cognitive impairment. J Gerontol A Biol Sci Med Sci 57:M414–M418

    PubMed  Google Scholar 

  • Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998a) Facilitative effects of the ampakine CX516 on short-term memory in rats: enhancement of delayed-nonmatch-to-sample performance. J Neurosci 18:2740–2747

    CAS  Google Scholar 

  • Hampson RE, Rogers G, Lynch G, Deadwyler SA (1998b) Facilitative effects of the ampakine CX516 on short-term memory in rats: correlations with hippocampal neuronal activity. J Neurosci 18: 1748–2763

    Google Scholar 

  • Harrison BE, Therrien B (2007) Effect of antipsychotic medication use on memory in patients with Alzheimer’s disease: assessing the potential risk for accelerated recent autobiographical memory loss. J Gerontol Nurs 33:11–20

    PubMed  Google Scholar 

  • Hashimoto M, Kazui H, Matsumoto K, Nakano Y, Yasuda M, Mori E (2005) Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease? Am J Psychiatry 162:676–682

    PubMed  Google Scholar 

  • Hefti F, Dravid A, Hartikka J (1984) Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res 293:305–311

    PubMed  CAS  Google Scholar 

  • Herzog CD, Dass B, Holden JE, Stansell J 3rd, Gasmi M, Tuszynski MH, Bartus RT, Kordower JH (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22:1124–1132

    PubMed  Google Scholar 

  • Hogervorst E, Riedel WJ, Schmitt JAJ, Jolles J (1998) Caffeine improves memory performance during distraction in middle-aged, but not in young or old subjects. Hum Psychopharmacol 13:277–284

    CAS  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    PubMed  CAS  Google Scholar 

  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    PubMed  CAS  Google Scholar 

  • John E (1967) Mechanisms of memory. Academic Press, New York

    Google Scholar 

  • Kaye WH, Sitaram N, Weingartner H, Ebert MH, Smallberg S, Gillin JC (1982) Modest facilitation on memory in dementia with combined lecithin and anticholinerestase treatment. Biol Psychiatry 17:275–280

    PubMed  CAS  Google Scholar 

  • Kemper RF, Steiner V, Hicks B, Pierce L, Iwuagwu C (2007) Anticholinergic medications: use among older adults with memory problems. J Gerontol Nurs 33:21–29 (quiz 30–1)

    PubMed  Google Scholar 

  • Kirk T, Roache JD, Griffiths RR (1990) Dose-response evaluation of the amnestic effects of triazolam and pentobarbital in normal subjects. J Clin Psychopharmacol 10:160–167

    PubMed  CAS  Google Scholar 

  • Knegtering H, Eijck M, Huijsman A (1994) Effects of antidepressants on cognitive functioning of elderly patients. A review. Drugs Aging 5:192–199

    PubMed  CAS  Google Scholar 

  • Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    PubMed  CAS  Google Scholar 

  • Kubanis P, Gobbel G, Zornetzer SF (1981) Age-related memory deficits in Swiss mice. Behav Neural Biol 32:241–247

    PubMed  CAS  Google Scholar 

  • Lechevallier-Michel N, Molimard M, Dartigues JF, Fabrigoule C, Fourrier-Reglat A (2005) Drugs with anticholinergic properties and cognitive performance in the elderly: results from the PAQUID Study. Br J Clin Pharmacol 59:143–151

    PubMed  Google Scholar 

  • Lee KW, Im JY, Song JS, Lee SH, Lee HJ, Ha HY, Koh JY, Gwag BJ, Yang SD, Paik SG, Han PL (2006) Progressive neuronal loss and behavioral impairments of transgenic C57BL/6 inbred mice expressing the carboxy terminus of amyloid precursor protein. Neurobiol Dis 22:10–24

    PubMed  CAS  Google Scholar 

  • Lermontova NN, Redkozubov AE, Shevtsova EF, Serkova TP, Kireeva EG, Bachurin SO (2001) Dimebon and tacrine inhibit neurotoxic action of beta-amyloid in culture and block L-type Ca(2+) channels. Bull Exp Biol Med 132:1079–1083

    PubMed  CAS  Google Scholar 

  • Lippa AS, Pelham RW, Beer B, Critchett DJ, Dean RL, Bartus RT (1980) Brain cholinergic dysfunction and memory in aged rats. Neurobiol Aging 1:13–19

    PubMed  CAS  Google Scholar 

  • Lynch G (1998) Memory and the brain: unexpected chemistries and a new pharmacology. Neurobiol Learn Mem 70:82–100

    PubMed  CAS  Google Scholar 

  • Lynch G, Gall CM (2006) Ampakines and the threefold path to cognitive enhancement. Trends Neurosci 29:554–562

    PubMed  CAS  Google Scholar 

  • Lynch G, Granger R, Ambros-Ingerson J, Davis CM, Kessler M, Schehr R (1997) Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp Neurol 145:89–92

    PubMed  CAS  Google Scholar 

  • Malaguarnera M, Pistone G, Vinci M, Motta M, di Fazio I, Rampello L (1998) Tacrine treatment of Alzheimer’s disease: many expectations, few certainties. Neuropsychobiology 38:226–231

    PubMed  CAS  Google Scholar 

  • Marriott JG, Abelson JS, Bartus RT (1979) Diazepam impairment of delayed-response performance in young and old rhesus monkeys. Soc Neurosci Abst 5:1053

    Google Scholar 

  • Martin LJ, Sisodia SS, Koo EH, Cork LC, Dellovade TL, Weidemann A, Beyreuther K, Masters C, Price DL (1991) Amyloid precursor protein in aged nonhuman primates. Proc Natl Acad Sci USA 88:1461–1465

    PubMed  CAS  Google Scholar 

  • Masters CL, Multhaup G, Salbaum JM, Weidemann A, Dyrks T, Hilbich C, Fischer P, König G, Beer J, Bunke D, Mönning U, Fuller S, Martins R, Simms G, Rumble B, Beyreuther K (1988) Precursor of Alzheimer’s disease (PAD) A4 amyloid protein. In: Sinet PM, Lamour Y, Christen Y (eds) Genetics and Alzheimer’s disease. Springer, Berlin, Germany, pp 134–141

    Google Scholar 

  • McGaugh (2000) Memory—a century of consolidation. Science 287:248–251

    PubMed  CAS  Google Scholar 

  • McGurk SR, Green MF, Wirshing WC, Wirshing DA, Marder SR, Mintz J, Kern R (2004) Antipsychotic and anticholinergic effects on two types of spatial memory in schizophrenia. Schizophr Res 68:225–233

    PubMed  Google Scholar 

  • Meador KJ, Loring DW, Davis HC, Sethi KD, Patel BR, Adams RJ, Hammond EJ (1989) Cholinergic and serotonergic effects on the P3 potential and recent memory. J Clin Exp Neuropsychol 11:252–260

    PubMed  CAS  Google Scholar 

  • Medin DL, O’Neil P, Smeltz E, Davis RT (1973) Age differences in retention of concurrent discrimination problems in monkeys. J Gerontol 28:63–67

    PubMed  CAS  Google Scholar 

  • Miller LL, Branconnier RJ (1983) Cannabis: effects on memory and the cholinergic limbic system. Psychol Bull 93:441–456

    PubMed  CAS  Google Scholar 

  • Mohr E, Schlegel J, Fabbrini G, Williams J, Mouradian MM, Mann UM, Claus JJ, Fedio P, Chase TN (1989) Clonidine treatment of Alzheimer’s disease. Arch Neurol 46:376–378

    PubMed  CAS  Google Scholar 

  • Mohs RC, Davis BM, Greenwald BS, Mathe AA, Johns CA, Horvath TB, Davis KL (1985) Clinical studies of the cholinergic deficit in Alzheimer’s disease. II. Psychopharmacologic studies. J Am Geriatr Soc 33:749–757

    PubMed  CAS  Google Scholar 

  • Morrison T (2008) Disease-modifying Alzheimer’s drugs chart unsteady course. Bioworld Today 19(148): 1, 3–4

    Google Scholar 

  • Muller U, Mottweiler E, Bublak P (2005) Noradrenergic blockade and numeric working memory in humans. J Psychopharmacol 19:21–28

    PubMed  Google Scholar 

  • Mungas D, Magliozzi JR, Laubly JN, Blunden D (1990) Effects of haloperidol on recall and information processing in verbal and spatial learning. Prog Neuropsychopharmacol Biol Psychiatry 14:181–193

    PubMed  CAS  Google Scholar 

  • Nordgren I, Lundgren G, Karlen B (1987) Effects of diazepam on muscarinic acetylcholine receptor binding in vivo and on oxotremorine-induced tremor and hypothermia in mice. Pharmacol Toxicol 60:258–261

    Article  PubMed  CAS  Google Scholar 

  • Paban V, Chambon C, Jaffard M, Alescio-Lautier B (2005) Behavioral effects of basal forebrain cholinergic lesions in young adult and aging rats. Behav Neurosci 119:933–945

    PubMed  Google Scholar 

  • Palmer AM, DeKosky ST (1993) Monoamine neurons in aging and Alzheimer’s disease. J Neural Transm Gen Sect 91:135–159

    PubMed  CAS  Google Scholar 

  • Pepeu G (2001) Overview and perspective on the therapy of Alzheimer’s disease from a preclinical viewpoint. Prog Neuropsychopharmacol Biol Psychiatry 25:193–209

    PubMed  CAS  Google Scholar 

  • Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    PubMed  CAS  Google Scholar 

  • Plosker GL, Keating GM (2004) Management of mild to moderate Alzheimer disease: defining the role of rivastigmine. Dis Manag Health Outcomes 12:55–72

    CAS  Google Scholar 

  • Raffaele KC, Berardi A, Asthana S, Morris P, Haxby JV, Soncrant TT (1991) Effects of long-term continuous infusion of the muscarinic cholinergic agonist arecoline on verbal memory in dementia of the Alzheimer type. Psychopharmacol Bull 27:315–319

    PubMed  CAS  Google Scholar 

  • Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, Younkin S, Younkin L, Schiff R, Weksler ME (2008) 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging (in press)

  • Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    PubMed  CAS  Google Scholar 

  • Riekkinen M, Laakso MP, Jakala P (1999) Clonidine impairs sustained attention and memory in Alzheimer’s disease. Neuroscience 92:975–982

    PubMed  CAS  Google Scholar 

  • Robitsek RJ, Fortin NJ, Koh MT, Gallagher M, Eichenbaum H (2008) Cognitive aging: a common decline of episodic recollection and spatial memory in rats. J Neurosci 28:8945–8954

    PubMed  CAS  Google Scholar 

  • Sahakian BJ, Owen AM, Morant NJ, Eagger SA, Boddington S, Crayton L, Crockford HA, Crooks M, Hill K, Levy R (1993) Further analysis of the cognitive effects of tetrahydroaminoacridine (THA) in Alzheimer’s disease: assessment of attentional and mnemonic function using CANTAB. Psychopharmacology (Berl) 110:395–401

    CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    PubMed  CAS  Google Scholar 

  • Schlegel J, Mohr E, Williams J, Mann U, Gearing M, Chase TN (1989) Guanfacine treatment of Alzheimer’s disease. Clin Neuropharmacol 12:124–128

    PubMed  CAS  Google Scholar 

  • Senior Journal (2005) Alzheimer's memory loss possibly restored by ampakine CX717: company has begun enrollments for phase II studies. August 18

  • Sitaram N, Weingartner H, Gillin JC (1978) Human serial learning: enhancement with arecholine and choline impairment with scopolamine. Science 201:274–276

    PubMed  CAS  Google Scholar 

  • Smith DE, Rapp PR, McKay HM, Roberts JA, Tuszynski MH (2004) Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J Neurosci 24:4373–4381

    PubMed  CAS  Google Scholar 

  • Soncrant TT, Raffaele KC, Asthana S, Berardi A, Morris PP, Haxby JV (1993) Memory improvement without toxicity during chronic, low dose intravenous arecoline in Alzheimer’s disease. Psychopharmacology (Berl) 112:421–427

    CAS  Google Scholar 

  • Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177

    PubMed  Google Scholar 

  • Sulkowski A (1980) Marihuana “high”: a model of senile dementia? Perspect Biol Med 23:209–214

    PubMed  CAS  Google Scholar 

  • Summers WK, Viesselman JO, Marsh GM, Candelora K (1981) Use of THA in treatment of Alzheimer-like dementia: pilot study in twelve patients. Biol Psychiatry 16:145–153

    PubMed  CAS  Google Scholar 

  • Summers WK, Majovski LV, Marsh GM, Tachiki K, Kling A (1986) Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Engl J Med 315:1241–1245

    PubMed  CAS  Google Scholar 

  • Thompson RF (1994) Behaviorism and neuroscience. Psychol Rev 101:259–265

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Roberts J, Senut MC, U HS, Gage FH (1996) Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 3:305–314

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Smith DE, Roberts J, McKay H, Mufson E (1998) Targeted intraparenchymal delivery of human NGF by gene transfer to the primate basal forebrain for 3 months does not accelerate beta-amyloid plaque deposition. Exp Neurol 154:573–582

    PubMed  CAS  Google Scholar 

  • Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    PubMed  CAS  Google Scholar 

  • Unrug A, Coenen A, van Luijtelaar G (1997) Effects of the tranquillizer diazepam and the stimulant methylphenidate on alertness and memory. Neuropsychobiology 36:42–48

    PubMed  CAS  Google Scholar 

  • Voytko ML (1996) Cognitive functions of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 75:13–25

    PubMed  CAS  Google Scholar 

  • Voytko ML, Olton DS, Richardson RT, Gorman LK, Tobin JR, Price DL (1994) Basal forebrain lesions in monkeys disrupt attention but not learning and memory. J Neurosci 14:167–186

    PubMed  CAS  Google Scholar 

  • Weinstock M (1997) Possible role of the cholinergic system and disease models. J Neural Transm Suppl 49:93–102

    PubMed  CAS  Google Scholar 

  • Wetherell A (1980) Some effects of atropine on short-term memory. Br J Clin Pharmacol 10:627–628

    PubMed  CAS  Google Scholar 

  • Wetzel CD, Squire LR, Janowsky DS (1981) Methylphenidate impairs learning and memory in normal adults. Behav Neural Biol 31:413–424

    PubMed  CAS  Google Scholar 

  • White HK, Levin ED (2004) Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment. Psychopharmacology (Berl) 171:465–471

    CAS  Google Scholar 

Download references

Acknowledgments

The vast majority of the authors’ studies reviewed here were performed while they were employees of either Warner-Lambert/Parke-Davis (now part of Pfizer) or Lederle Laboratories of American Cyanamid (now part of Wyeth). We are grateful for the support we received conducting this research and in particular for the encouragement of Dr. Duncan McCarthy (of Warner-Lambert/Parke-Davis) whose vision and passion was responsible for the initiation the first formal pharmaceutical program to search for drugs to treat learning and memory deficits (in 1973). We gratefully acknowledge the input, influence, and contributions of many friends and colleagues who, over the years, participated in many of the studies and thinking described in this review, and thus shared co-authorship in many of the published papers cited. We also appreciate the support of several journal and book editors involved in some of our earliest papers, who listened to our arguments and then supported our efforts to promote certain concepts and interpretations, often over the objection of some of their reviewers. Finally, we appreciate the helpful comments on earlier drafts by Drs. Steven Ferris, Mark Tuszynski, Jeffrey Kordower, and Trevor Robbins and the very helpful assistance of Anna Kovalchuk in preparing this manuscript and its tables.

Conflict of interest statement

The authors declare no conflicts of interest, except for brief mention of a possible treatment approach using AAV-NGF, for which Ceregene has an active clinical program. RTB (but not RLD) is an officer of Ceregene, receiving both salary and stock options.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond T. Bartus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartus, R.T., Dean, R.L. Pharmaceutical treatment for cognitive deficits in Alzheimer’s disease and other neurodegenerative conditions: exploring new territory using traditional tools and established maps. Psychopharmacology 202, 15–36 (2009). https://doi.org/10.1007/s00213-008-1365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1365-7

Keywords

Navigation