Skip to main content

Advertisement

Log in

Using modeling to help understand vaginal microbicide functionality and create better products

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

A summary is presented of a range of mathematical models that relate to topical microbicidal molecules, applied vaginally to inhibit HIV transmission. These models contribute to the fundamental understanding of the functioning of those molecules, as introduced in different delivery systems. They also provide computational tools that can be employed in the practical design and evaluation of vaginal microbicide products. Mathematical modeling can be implemented, using stochastic principles, to understand the probability of infection by sexually transmitted HIV virions. This provides a frame of reference for the deterministic models of the various processes that underlie HIV transmission and its inhibition, including: the temporal and spatial history of HIV migration from semen to vaginal epithelial surfaces and thence to the underlying stroma; the time and spatial distribution of microbicidal drugs as delivered by various vehicles (e.g., gels, rings, films, and tablets)—this is central to understanding microbicide product pharmacokinetics; and the time and space history of the drug interactions with HIV directly and with host cells for HIV within the vaginal environment—this informs the understanding of microbicide pharmacodynamics. Models that characterize microbicide functionality and performance should and can interface with both in vitro and in vivo experimental studies. They can serve as a rapidly applied, inexpensive tool, to facilitate microbicide R&D, in advance of more costly and time consuming clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Karim QA, Karim SSA, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science. 2010;329(5996):1168–74.

    Article  Google Scholar 

  2. Nestorov I. Whole body pharmacokinetic models. Clin Pharmacokinet. 2003;42(10):883–908.

    Article  PubMed  CAS  Google Scholar 

  3. Pang KS, Weiss M, Macheras P. Advanced pharmacokinetic models based on organ clearance, circulatory, and Fractal concepts. AAPS J. 2007;9(2):E268–83.

    Article  PubMed  Google Scholar 

  4. Saltzman W. Drug delivery: Engineering principles for drug therapy. 1st ed. New York: Oxford University Press; 2001.

    Google Scholar 

  5. Avrett S, Harrison P, McGrory E. Mapping the microbicide effort. Silver Spring: Alliance for Microbicide Development; 2007

  6. Geonnotti AR, Katz DF. Dynamics of HIV neutralization by a microbicide formulation layer: biophysical fundamentals and transport theory. Biophys J. 2006;91(6):2121–30.

    Article  PubMed  CAS  Google Scholar 

  7. Stone A, Harrison PF. Microbicides—ways forward. Silver Spring: Alliance for Microbicide Development; 2010

  8. Geonnotti AR, Katz DF. Compartmental transport model of microbicide delivery by an intravaginal ring. J Pharm Sci. 2010;99(8):3514–21.

    Article  PubMed  CAS  Google Scholar 

  9. Hendrix CW, Cao YJ, Fuchs EJ. Topical microbicides to prevent HIV: clinical drug development challenges. Annu Rev Pharmacol Toxicol. 2009;49:349–75.

    Article  PubMed  CAS  Google Scholar 

  10. Mahalingam A, Smith E, Fabian J, Damian FR, Peters JJ, Clark MR, et al. Design of a semisolid vaginal microbicide gel by relating composition to properties and performance. Pharm Res. 2010;27(11):2478–91.

    Article  PubMed  CAS  Google Scholar 

  11. Tuckwell HC, Shipman PD, Perelson AS. The probability of HIV infection in a new host and its reduction with microbicides. Math Biosci. 2008;214(1–2):81–6.

    Article  PubMed  Google Scholar 

  12. Essunger P, Perelson AS. Modeling HIV-infection of CD4(+) T-cell subpopulations. J Theor Biol. 1994;170(4):367–91.

    Article  PubMed  CAS  Google Scholar 

  13. Kamina A, Makuch RW, Zhao HY. A stochastic modeling of early HIV-1 population dynamics. Math Biosci. 2001;170(2):187–98.

    Article  PubMed  CAS  Google Scholar 

  14. Merrill SJ. The stochastic dance of early HIV infection. J Comput Appl Math. 2005;184(1):242–57.

    Article  Google Scholar 

  15. Perelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol. 2002;2(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  16. Perelson AS, Essunger P, Cao YZ, Vesanen M, Hurley A, Saksela K, et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature. 1997;387(6629):188–91.

    Article  PubMed  CAS  Google Scholar 

  17. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996;271(5255):1582–6.

    Article  PubMed  CAS  Google Scholar 

  18. Phillips AN. Reduction of HIV concentration during acute infection: independence from a specific immune response. Science. 1996;271(5248):497–9.

    Article  PubMed  CAS  Google Scholar 

  19. Tan WY, Wu HL. Stochastic modeling of the dynamics of CD4(+) T-cell infection by HIV and some Monte Carlo studies. Math Biosci. 1998;147(2):173–205.

    Article  PubMed  CAS  Google Scholar 

  20. Tuckwell HC, Le Corfec E. A stochastic model for early HIV-1 population dynamics. J Theor Biol. 1998;195(4):451–63.

    Article  PubMed  CAS  Google Scholar 

  21. Murray JD. Mathematical biology: I. An introduction. 3rd ed. New York: Springer; 2002.

    Google Scholar 

  22. Perelson AS, Kirschner DE, Deboer R. Dynamics of HIV-infection of CD4+ T-cells. Math Biosci. 1993;114(1):81–125.

    Article  PubMed  CAS  Google Scholar 

  23. Rohan LC, Sassi AB. Vaginal drug delivery systems for HIV prevention. AAPS J. 2009;11(1):78–87.

    Article  PubMed  CAS  Google Scholar 

  24. Lai BE, Geonnotti AR, Desoto MG, Montefiori DC, Katz DF. Semi-solid gels function as physical barriers to human immunodeficiency virus transport in vitro. Antiviral Res. 2010;88(2):143–51.

    Article  PubMed  CAS  Google Scholar 

  25. Jay JI, Shukair S, Langheinrich K, Hanson MC, Cianci GC, Johnson TJ, et al. Modulation of viscoelasticity and HIV transport as a function of pH in a reversibly crosslinked hydrogel. Adv Funct Mater. 2009;19(18):2969–77.

    Article  CAS  Google Scholar 

  26. Lai BE, Henderson MH, Peters JJ, Walmer DK, Katz DF. Transport theory for HIV diffusion through in vivo distributions of topical microbicide gels. Biophys J. 2009;97(9):2379–87.

    Article  PubMed  CAS  Google Scholar 

  27. Henderson MH, Couchman GM, Walmer DK, Peters JJ, Owen DH, Brown MA, et al. Optical imaging and analysis of human vaginal coating by drug delivery gels. Contraception. 2007;75(2):142–51.

    Article  PubMed  CAS  Google Scholar 

  28. Mauck CK, Katz D, Sandefer EP, Nasution MD, Henderson M, Digenis GA, et al. Vaginal distribution of Replens and K-Y Jelly using three imaging techniques. Contraception. 2008;77(3):195–204.

    Article  PubMed  Google Scholar 

  29. Lai BE. Reduction of HIV-virion transport for prevention of HIV transmission. Durham: Duke University; 2010.

    Google Scholar 

  30. Owen DH, Katz DF. A vaginal fluid simulant. Contraception. 1999;59(2):91–5.

    Article  PubMed  CAS  Google Scholar 

  31. Plenys AM. Mechanical analysis of topical drug delivery gels for women's reproductive health. Durham: Duke University; 2000.

    Google Scholar 

  32. Kieweg SL. Mechanical analysis of vaginal gels intended for microbicide application. Durham: Duke University; 2005.

    Google Scholar 

  33. Kieweg SL, Katz DF. Squeezing flows of vaginal gel formulations relevant to microbicide drug delivery. J Biomech Eng Trans ASME. 2006;128(4):540–53.

    Article  Google Scholar 

  34. Kieweg SL, Katz DF. Interpreting properties of microbicide delivery gels: analyzing deployment due to squeezing. J Pharm Sci. 2007;96(4):835–50.

    Article  PubMed  CAS  Google Scholar 

  35. Lai BE, Xie YQ, Lavine ML, Szeri AJ, Owen DH, Katz DF. Dilution of microbicide gels with vaginal fluid and semen simulants: effect on rheological properties and coating flow. J Pharm Sci. 2008;97(2):1028–36.

    Article  Google Scholar 

  36. Bird RB, Armstrong RC, Hassager O. Dynamics of poylmeric liquids. Volume 1: fluid mechanics. 2nd ed. New York: Wiley; 1987.

    Google Scholar 

  37. Leider PJ, Bird RB. Squeezing flow between parallel disks. 1. Theoretical analysis. Ind Eng Chem Fund. 1974;13(4):336–41.

    Article  CAS  Google Scholar 

  38. Sherwood JD, Durban D. Squeeze-flow of a Herschel–Bulkley fluid. J Non-Newtonian Fluid Mech. 1998;77(1–2):115–21.

    Article  CAS  Google Scholar 

  39. Lighthill J. Mathematical biofluiddynamics. Regional Conference Series in Applied Mathematics. Philadelphia: Society for Industrial Mathematics; 1975. pp 1–281.

  40. Szeri AJ, Park SC, Verguet S, Weiss A, Katz DF. A model of transluminal flow of an anti-HIV microbicide vehicle: combined elastic squeezing and gravitational sliding. Phys Fluids. 1994;20(8):83101. 2008 August.

    Article  Google Scholar 

  41. Leal LG. Laminar flow and convective transport processes: scaling principles and asymptotic analysis. Boston: Butterworth-Heinemann; 1992.

    Google Scholar 

  42. Minoguchi R, Osborn III TW, Hong H, Owens SJ, Haridas B, inventors. Reverse finite element analysis and modeling of biomechanical properties of internal tissues. US patent 2007/0016391, 18 Jan 2007

  43. Katz D, Peters J, Clark M, Friend D, Kiser P. Multivariate computational model to help rate microbicide gel performance: combining vaginal distribution, drug deliver and acceptability. Pittsburgh: Microbicides 2010.

  44. Masters WH, Johnson VE. Human sexual response. Boston: Little Brown; 1966.

  45. Mitchell C, Paul K, Agnew K, Gaussman R, Coombs RW, Hitti J. Estimating volume of cervicovaginal secretions in cervicovaginal lavage fluid collected for measurement of genital HIV-1 RNA levels in women. J Clin Microbiol. 2011;49(2):735–6.

    Article  PubMed  Google Scholar 

  46. Owen DH, Peters JJ, Katz DF. Rheological properties of contraceptive gels. Contraception. 2000;62(6):321–6.

    Article  PubMed  CAS  Google Scholar 

  47. Crosby BJ, Mangnus M, de Groot W, Daniels R, McLeish TCB. Characterization of long chain branching: dilution rheology of industrial polyethylenes. J Rheol. 2002;46(2):401–26.

    Article  CAS  Google Scholar 

  48. Peppas NA. Physiologically responsive hydrogels. Journal of Bioactive and Compatible Polymers. 1991;6(3):241–6.

    Article  CAS  Google Scholar 

  49. Podual K, Doyle F, Peppas NA. Modeling of water transport in and release from glucose-sensitive swelling-controlled release systems based on poly(diethylaminoethyl methacrylate-g-ethylene glycol). Ind Eng Chem Res. 2004;43(23):7500–12.

    Article  CAS  Google Scholar 

  50. Szeri A, Tasoglu S, Park S, Gao Y, Katz D. Biophysical computation of vaginal dilution and distribution of microbicide gels. Pittsburgh: Microbicides 2010.

  51. Szeri AJ, Tasoglu S, Katz DF. Transport processes in vaginal films that release anti-HIV microbicide molecules. Annual meeting of the Biophysical Society, Baltimore; 2011.

  52. Katz DF, Henderson MH, Owen DH, Plenys AM, Walmer DK. What is Needed to Advance Vaginal Formulation Technology? In: Rencher WF, editor. Vaginal microbicide formulations workshop. Philadelphia: Lippincott-Raven; 1998. p. 90–9.

    Google Scholar 

  53. Kheyfets VO, Kieweg SL. Free-surface coating flows of non-Newtonian gels: 3-D numerical simulation of gravity-induced flow. In: Proceeding of the Asme Summer Bioengineering Conference; 2007. pp 531–532.

  54. Barnhart KT, Izquierdo A, Pretorius ES, Shera DM, Shabbout M, Shaunik A. Baseline dimensions of the human vagina. Hum Reprod. 2006;21(6):1618–22.

    Article  PubMed  Google Scholar 

  55. Skalak R, Ozkaya N, Skalak TC. Biofluid mechanics. Annu Rev Fluid Mech. 1989;21:167–204.

    Article  Google Scholar 

  56. Grotberg JB, Jensen OE. Biofluid mechanics in flexible tubes. Annu Rev Fluid Mech. 2004;36:121–47.

    Article  Google Scholar 

  57. Pedley TJ. The fluid mechanics of large blood vessels. New York: Cambridge University Press; 1980.

    Google Scholar 

  58. Barnhart KT, Pretorius ES, Shera DM, Shabbout M, Shaunik A. The optimal analysis of MRI data to quantify the distribution of a microbicide. Contraception. 2006;73(1):82–7.

    Article  PubMed  CAS  Google Scholar 

  59. Barnhart KT, Pretorius ES, Timbers K, Shera D, Shabbout M, Malamud D. In vivo distribution of a vaginal gel: MRI evaluation of the effects of gel volume, time and simulated intercourse. Contraception. 2004;70(6):498–505.

    Article  PubMed  CAS  Google Scholar 

  60. Barnhart KT, Pretorius ES, Shaunik A, Timbers K, Nasution M, Mauck C. Vaginal distribution of two volumes of the novel microbicide gel cellulose sulfate (2.5 and 3.5 mL). Contraception. 2005;72(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  61. Barnhart KT, Pretorius ES, Timbers K, Shera D, Shabbout M, Malamud D. Distribution of a 3.5-mL (1.0%) C31G vaginal gel using magnetic resonance imaging. Contraception. 2005;71(5):357–61.

    Article  PubMed  CAS  Google Scholar 

  62. Buckheit RW, Watson KM, Morrow KM, Ham AS. Development of topical microbicides to prevent the sexual transmission of HIV. Antivir Res. 2010;85(1):142–58.

    Article  PubMed  CAS  Google Scholar 

  63. Tolley EE, Harrison PF, Goetghebeur E, Morrow K, Pool R, Taylor D, et al. Adherence and its measurement in phase 2/3 microbicide trials. AIDS Behav. 2010;14(5):1124–36.

    Article  PubMed  Google Scholar 

  64. McGowan I. Microbicides for HIV prevention: reality or hope? Curr Opin Infect Dis. 2010;23(1):26–31.

    Article  PubMed  CAS  Google Scholar 

  65. Chen J, Katz DF. Compartmental analysis of intravaginal HIV transport and neutralization by microbicides. Annual meeting of the Biophysical Society, Baltimore; 2011.

  66. Buckheit RW, Watson K, Fliakas-Boltz V, Russell J, Loftus TL, Osterling MC, et al. SJ-3366, a unique and highly potent nonnucleoside reverse transcriptase inhibitor of human immunodeficiency virus type 1 (HIV-1) that also inhibits HIV-2. Antimicrob Agents Chemother. 2001;45(2):393–400.

    Article  PubMed  CAS  Google Scholar 

  67. Mahalingam A, Simmons AP, Ugaonkar SR, Watson KM, Dezzutti CS, Rohan LC, et al. Vaginal microbicide gel for the delivery of IQP-0528, a pyrimidinedione analog with a dual mechanism of action against HIV-1. Antimicrobial Agents and Chemotherapy 2011; (in press).

  68. International Rectal Microbicide Advocates. From promise to product: advancing rectal microbicide research and advocacy. In: The 2010 International Microbicides Conference; 2010.

  69. Minces LR, McGowan I. Advances in the development of microbicides for the prevention of HIV infection. Current Infectious Disease Reports. 2010;12(1):56–62.

    Article  PubMed  Google Scholar 

  70. Drake T, Rinehart M, Kim KH, LaCroix J, Henderson M, DeSoto M, et al. Simultaneous optical detection of intravaginal gel coating, dilution, drug distribution and tissue integrity in women. Pittsburgh: Microbicides; 2010.

  71. Szeri A, Tasoglu S, Park S, Gao Y, Katz D, editors. Biophysical computation of vaginal dilution and distribution of microbicide gels. Pittsburgh: Microbicides; 2010.

  72. Kieweg SL, Witelski TP, Katz DF, editors. Free-surface coating flows of non-Newtonian vaginal gels: numerical and experimental simulations of gravity-induced flow. In: American Society of Mechanical Engineering Summer Bioengineering Conference, Amelia Island; 2006.

Download references

Acknowledgments

We gratefully acknowledge the contributions of our co-workers Meredith Clark, David Friend, Anthony Geonnotti, Alex Gorham, Marcus Henderson, Sarah Kieweg, Patrick Kiser, Bonnie Lai, Alamelu Mahalingam, Derek Owen, Su Chan Park, Jennifer Peters, Audra Plenys, Andrew Szeri, Savas Tasoglu, and Stephane Verguet in the creation of the models described here. Support is gratefully acknowledged from the CONRAD Program MC-08-498, NIH U19 AI 077289, and NIH R21 AI 076019

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Katz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, D.F., Gao, Y. & Kang, M. Using modeling to help understand vaginal microbicide functionality and create better products. Drug Deliv. and Transl. Res. 1, 256–276 (2011). https://doi.org/10.1007/s13346-011-0029-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0029-z

Keywords

Navigation