Skip to main content

Advertisement

Log in

Design of a Semisolid Vaginal Microbicide Gel by Relating Composition to Properties and Performance

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Develop a preclinical in vitro algorithm enabling de novo design of semisolid vaginal drug delivery gels, by using biomechanical modeling of gel spreading in the vaginal canal and empirically relating gel composition to mechanical properties and predicted performance.

Methods

Gel performance was defined through a multivariate objective function constructed from gels’ mechanical properties and selected performance criteria for gel spreading within the vaginal canal. Mixture design of experiment was used to establish a semi-empirical relationship linking composition-property and property-performance relationships for gels with varying concentrations of hydroxyethylcellulose and Carbopol 974P. This permits definition of a local optimum for gel composition and volume of administration, within a defined gel composition space.

Results

Rheological behavior and, consequently, the value of the objective function varied broadly with composition. The algorithm indicated a 3.0 wt% HEC gel as the near optimal composition for a 3.5 mL applied volume for gels designed to spread throughout the vagina.

Conclusions

The algorithm introduced herein is a novel tool that facilitates an understanding of the composition-property-performance relationship for vaginal semisolid drug delivery gels. This approach has promise as a scientific methodology for evaluation and optimization of vaginal gels prior to in vivo investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

vaginal area coated by the gel

A* :

value of A at which the score becomes zero

Amax :

area of the vaginal canal

API:

active Pharmaceutical Ingredient

CPPR:

composition-property-performance relationship

HEC:

Hydroxyethylcellulose

MDOE:

mixture design of experiment

RSM:

response surface modeling

S:

score

Scombined :

average of Sundiluted and Sdiluted

Sdiluted :

score for gels diluted 1:4 with VFS

Sundiluted :

score for undiluted gels

TFV:

Tenofovir

V:

volume of the gel

VFS:

vaginal fluid simulant

VL :

volume of the gel leaked

REFERENCES

  1. das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm. 2006;318:1–14.

    Article  PubMed  Google Scholar 

  2. Barnhart K, Kulp JL, Rosen M, Shera DM. A randomized trial to determine the distribution of four topical gel formulations in the human vagina. Contraception. 2009;79:297–303.

    Article  CAS  PubMed  Google Scholar 

  3. Barnhart KT, Pretorius ES, Shera DM, Shabbout M, Shaunik A. The optimal analysis of MRI data to quantify the distribution of a microbicide. Contraception. 2006;73:82–7.

    Article  CAS  PubMed  Google Scholar 

  4. das Neves J, da Silva MV, Goncalves MP, Amaral MH, Bahia MF. Rheological properties of vaginal hydrophilic polymer gels. Curr Drug Deliv. 2009;6:83–92.

    Article  PubMed  Google Scholar 

  5. Hendrix CW, Cao YJ, Fuchs EJ. Topical microbicides to prevent HIV: clinical drug development challenges. Annu Rev Pharmacol Toxicol. 2009;49:349–75.

    Article  CAS  PubMed  Google Scholar 

  6. Shattock RJ, Moore JP. Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol. 2003;1:25–34.

    Article  CAS  PubMed  Google Scholar 

  7. Grant RM, Hamer D, Hope T, Johnston R, Lange J, Lederman MM, et al. Whither or wither microbicides? Science. 2008;321:532–4.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen J. HIV/AIDS. At last, vaginal gel scores victory against HIV. Science 329:374–5.

  9. Justin-Temu M, Damian F, Kinget R, Van Den Mooter G. Intravaginal gels as drug delivery systems. J Women’s Health. 2004;13:834–44.

    Article  Google Scholar 

  10. Owen DH, Peters JJ, Kieweg SL, Geonnotti AR, Schnaare RL, Katz DF. Biophysical analysis of prototype microbicidal gels. J Pharm Sci. 2007;96:661–9.

    Article  CAS  PubMed  Google Scholar 

  11. Barnhart KT, Pretorius ES, Shaunik A, Timbers K, Nasution M, Mauck C. Vaginal distribution of two volumes of the novel microbicide gel cellulose sulfate (2.5 and 3.5 mL). Contraception. 2005;72:65.

    Article  CAS  PubMed  Google Scholar 

  12. Kieweg Sarah L, Katz David F. Squeezing flows of vaginal gel formulations relevant to microbicide drug delivery. J Biomech Eng. 2006;128:540–53.

    Article  CAS  PubMed  Google Scholar 

  13. Kieweg SL, Katz DF. Interpreting properties of microbicide drug delivery gels: analyzing deployment kinetics due to squeezing. J Pharm Sci. 2007;96:835–50.

    Article  CAS  PubMed  Google Scholar 

  14. Szeri AJ, Park SC, Verguet S, Weiss A, Katz DF. A model of transluminal flow of an anti-HIV microbicide vehicle: combined elastic squeezing and gravitational sliding. Phys Fluids. 2008;20:83101.

    Article  Google Scholar 

  15. Nicolaou CA, Brown N, Pattichis CS. Molecular optimization using computational multi-objective methods. Curr Opin Drug Discov Devel. 2007;10:316–24.

    CAS  PubMed  Google Scholar 

  16. Handl J, Kell DB, Knowles J. Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Trans Comput Biol Bioinform. 2007;4:279.

    Article  CAS  PubMed  Google Scholar 

  17. Rajamani R, Good AC. Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development. Curr Opin Drug Discov Devel. 2007;10:308–15.

    CAS  PubMed  Google Scholar 

  18. Chopra S, Motwani SK, Iqbal Z, Talegaonkar S, Ahmad FJ, Khar RK. Optimisation of polyherbal gels for vaginal drug delivery by Box-Behnken statistical design. Eur J Pharm Biopharm. 2007;67:120–31.

    Article  CAS  PubMed  Google Scholar 

  19. Furlanetto S, Cirri M, Maestrelli F, Corti G, Mura P. Study of formulation variables influencing the drug release rate from matrix tablets by experimental design. Eur J Pharm Biopharm. 2006;62:77–84.

    Article  CAS  PubMed  Google Scholar 

  20. Chu JS, Amidon GL, Weiner ND, Goldberg AH. Mixture experimental design in the development of a mucoadhesive gel formulation. Pharm Res. 1991;8:1401–7.

    Article  CAS  PubMed  Google Scholar 

  21. Valenta C. The use of mucoadhesive polymers in vaginal delivery. Adv Drug Deliv Rev. 2005;57:1692–712.

    Article  CAS  PubMed  Google Scholar 

  22. Tien D, Schnaare RL, Kang F, Cohl G, McCormick TJ, Moench TR, et al. In vitro and in vivo characterization of a potential universal placebo designed for use in vaginal microbicide clinical trials. AIDS Res Hum Retroviruses. 2005;21:845–53.

    Article  CAS  PubMed  Google Scholar 

  23. Cummins Jr JE, Guarner J, Flowers L, Guenthner PC, Bartlett J, Morken T, et al. Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob Agents Chemother. 2007;51:1770–9.

    Article  CAS  PubMed  Google Scholar 

  24. Patton DL, Sweeney YT, Balkus JE, Rohan LC, Moncla BJ, Parniak MA, et al. Preclinical safety assessments of UC781 anti-human immunodeficiency virus topical microbicide formulations. Antimicrob Agents Chemother. 2007;51:1608–15.

    Article  CAS  PubMed  Google Scholar 

  25. Terrazas-Aranda K, Van Herrewege Y, Lewi PJ, Van Roey J, Vanham G. In vitro pre- and post-exposure prophylaxis using HIV inhibitors as microbicides against cell-free or cell-associated HIV-1 infection. Antiviral Chem Chemother. 2007;18:141–51.

    CAS  Google Scholar 

  26. Barditch-Crovo P, Deeks SG, Collier A, Safrin S, Coakley DF, Miller M, et al. Phase i/ii trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother. 2001;45:2733–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bateman C. Tenofovir gel—the new HIV prevention ‘banker’? S Afr Med J. 2007;97:496–8.

    PubMed  Google Scholar 

  28. Mayer KH, Maslankowski LA, Gai F, El-Sadr WM, Justman J, Kwiecien A, et al. Safety and tolerability of tenofovir vaginal gel in abstinent and sexually active HIV-infected and uninfected women. AIDS. 2006;20:543–51.

    Article  CAS  PubMed  Google Scholar 

  29. Lai Bonnie E, Xie Yao Q, Lavine Michael L, Szeri Andrew J, Owen Derek H, Katz David F. Dilution of microbicide gels with vaginal fluid and semen simulants: effect on rheological properties and coating flow. J Pharm Sci. 2008;97:1030–8.

    Article  CAS  PubMed  Google Scholar 

  30. Cornell JA. Experiments with mixtures. 3rd ed. New York: Wiley; 2002.

    Google Scholar 

  31. Owen DH, Katz DF. A vaginal fluid simulant. Contraception. 1999;59:91–5.

    Article  CAS  PubMed  Google Scholar 

  32. Henderson MH, Couchman GM, Walmer DK, Peters JJ, Owen DH, Brown MA, et al. Optical imaging and analysis of human vaginal coating by drug delivery gels. Contraception. 2007;75:142–51.

    Article  CAS  PubMed  Google Scholar 

  33. Mauck Christine K, Katz D, Sandefer Erik P, Nasution Marlina D, Henderson M, Digenis George A, et al. Vaginal distribution of Replens and K-Y Jelly using three imaging techniques. Contraception. 2008;77:195–204.

    Article  CAS  PubMed  Google Scholar 

  34. Kilmarx PH, Blanchard K, Chaikummao S, Friedland BA, Srivirojana N, Connolly C, et al. A randomized, placebo-controlled trial to assess the safety and acceptability of use of carraguard vaginal gel by heterosexual couples in Thailand. Sex Transm Dis. 2008;35:226–32.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Lee CH. Characterization of a female controlled drug delivery system for microbicides. Contraception. 2002;66:281–7.

    Article  CAS  PubMed  Google Scholar 

  36. Ramjee G, Morar NS, Braunstein S, Friedland B, Jones H, van de Wijgert J. Acceptability of Carraguard, a candidate microbicide and methyl cellulose placebo vaginal gels among HIV-positive women and men in Durban. South Africa AIDS Res Ther. 2007;4:20.

    Google Scholar 

  37. Barnhart Kurt T, Izquierdo A, Pretorius ES, Shera David M, Shabbout M, Shaunik A. Baseline dimensions of the human vagina. Hum Reprod. 2006;21:618–22.

    Google Scholar 

  38. Owen DH, Peters JJ, Katz DF. Rheological properties of contraceptive gels. Contraception. 2000;62:321–6.

    Article  CAS  PubMed  Google Scholar 

  39. Szeri AJPS, Tasoglu S, Katz DF. Effects of dilution on coating flow of an anti-HIV microbicide vehicle. In American Physical Society, Minneapolis, MN; 2009.

  40. Poonia B, Walter L, Dufour J, Harrison R, Marx PA, Veazey RS. Cyclic changes in the vaginal epithelium of normal rhesus macaques. J Endocrinol. 2006;190:829–35.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was generously supported by CONRAD under a Cooperative Agreement with USAID (HRN-A-00-98-00020-00). The views expressed by the authors do not necessarily reflect those of USAID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick F. Kiser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material

(DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahalingam, A., Smith, E., Fabian, J. et al. Design of a Semisolid Vaginal Microbicide Gel by Relating Composition to Properties and Performance. Pharm Res 27, 2478–2491 (2010). https://doi.org/10.1007/s11095-010-0244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0244-1

KEY WORDS

Navigation