Skip to main content
Log in

Molecular Characterization and Phylogeny of a Phytoplasma Associated with Phyllody Disease of toria (Brassica rapa L. subsp. dichotoma (Roxb.)) in India

  • Original article
  • Published:
Indian Journal of Virology Aims and scope Submit manuscript

Abstract

Samples from toria plants (Brassica rapa L. subsp. dichotoma (Roxb.)) exhibiting phyllody, virescence, witches broom, extensive malformation of floral parts, formation of bladder like siliquae and flower sterility were collected from four different locations in India. Sequencing and phylogenetic analysis of the 16S rRNA, a part of 23S rRNA, partial sec A genes, rp gene and 16S–23S intergenic spacer region indicated that the phytoplasmas associated with toria phyllody (TP) symptoms were identical and belonged to 16SrIX phytoplasma Pigeon pea witches’-broom (PPWB) group. The iPhyClassifier generated virtual RFLP pattern of 1.25 kb 16S rDNA sequences indicated that TP phytoplasma belongs to 16SrIX-C phytoplasma subgroup. Complete 23S rRNA gene of TP phytoplasma had 2,787 nucleotides and is the first sequence of 16SrIX phytoplasma group. Restriction digestion of 16S rDNA and 23S rDNA PCR products has also shown that TP phytoplasmas from all the four locations in India were identical. Toria is a previously unreported host for a phytoplasma in16SrIX-C subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X. Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence dore’e phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Appl Environ Microbiol. 2007;73:4001–10.

    Article  PubMed  CAS  Google Scholar 

  2. Azadvar M (2010). Biological and molecular characterization of phytoplasma associated with Brassica rapa in India. PhD Thesis, Indian Agricultural Research Institute, New Delhi.

  3. Azadvar M, Baranwal VK, Yadava DK. First report of a 16SrIX (Pigeon pea witches’ broom) phytoplasma associated with toria (Brassica rapa cv. toria) phyllody disease in India. New Dis Rep. 2009;20:27.

    Google Scholar 

  4. Bertaccini A, Vorácková Z, Vibio M, Fránová J, Navrátil M, Špak J, Nebesárová J. Comparison of phytoplasmas infecting winter oilseed rape in the Czech Republic with Italian Brassica phytoplasmas and their relationship to the aster yellows group. Plant Pathol. 1998;47:317–24.

    Article  Google Scholar 

  5. Bhowmik TP. Oilseed Brassicas constraints and their management. New Delhi: CBS Publishers and Distributors; 2003, p. 254.

    Google Scholar 

  6. Bindra OS, Bakhetia DRC. A note on natural incidence of sesamum phyllody virus disease in Brassica spp. Ludhiana J Res. 1967;4:406–8.

    CAS  Google Scholar 

  7. Botti S, Bertaccini A. Variability and functional role of chromosomal sequences in 16SrI-B subgroup phytoplasmas including aster yellows and related strains. J Appl Microbiol. 2003;94:103–10.

    Article  PubMed  CAS  Google Scholar 

  8. Davis RE, Dally E, Zhao Y, Lee IM, Jomantiene R, Detweiler AJ, Putnam ML. First report of a new subgroup 16SrIX-E, ‘Candidatus Phytoplasma phoenicium’-related, phytoplasma associated with juniper witches’ broom disease in Oregon. New Dis Rep. 2009;20:35.

    Google Scholar 

  9. Firrao G, Gibb K, Streten C. Short taxonomic guide to the genus ‘Candidatus phytoplasma’. J Plant Pathol. 2005;87:249–263

    Google Scholar 

  10. Guo VH, Cheng ZM, Walla JA. Amplification of the 23S rRNA gene and its application in differentiation and detection of phytoplasmas. Can J Plant Pathol. 2000;22:380–6.

    Article  CAS  Google Scholar 

  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  12. Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol. 2008;58:1826–37.

    Article  PubMed  CAS  Google Scholar 

  13. Kaushik CD, Tripathi NN, Vir S. Effect of date of sowing on toria phyllody incidence and estimation of losses. Haryana Agric Univ J Res. 1978;8:28–30.

    Google Scholar 

  14. Lee IM, Zhao Y, Bottner KD. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Mol Cell Probes. 2006;20:87–91.

    Article  PubMed  CAS  Google Scholar 

  15. Lee IM, Zhao Y, Davis RE. Prospects to multiple gene-based systems for differentiation and classification of phytoplasmas. In: Weintraub PG, Jones P, editors. Phytoplasmas genomes, plant hosts and vectors. Wallingford: CAB International; 2010. p. 51–63.

    Google Scholar 

  16. Maliogka VI, Tsialtas JT, Papantoniou A, Efthimiou K, Katis NI. First report of a phytoplasma associated with an oilseed rape disease in Greece. Plant Pathol. 2009;58:792.

    Article  Google Scholar 

  17. Marcone C, Lee IM, Davis RE, Ragozzino A, Seemüller E. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol. 2000;50:1703–13.

    PubMed  CAS  Google Scholar 

  18. Marcone C, Ragozzino C, Camele I, Rana GL, Seemüller E. Updating and extending genetic characterization and classification of phytoplasmas from wild and cultivated plants in southern Italy. J Plant Pathol. 2001;83:133–8.

    CAS  Google Scholar 

  19. Martini M, Lee IM, Bottner KD, Zhao Y, Botti S, Bertaccini A, Harrison NA, Carraro L, Marcone C, Khan AJ, Osler R. Ribosomal protein gene based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol. 2007;57:2037–51.

    Article  PubMed  CAS  Google Scholar 

  20. Olivier CY, Séguin-Swartz G, Hegedus D. First report of “Candidatus Phytoplasma asteris” related strains in Brassica rapa in Saskatchewan, Canada. Plant Dis. 2006;90:832.

    Article  Google Scholar 

  21. Salehi M, Izadpanah K, Heydarnejad J. Characterization of a new almond witches’-broom phytoplasma in Iran. J Phytopathol. 2006;154:386–91.

    Article  CAS  Google Scholar 

  22. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2001.

    Google Scholar 

  23. Schneider B, Seemüller E, Smart CD, Kirkpatrick BC. Phylogenetic classification of plant pathogenic mycoplasma like organisms or phytoplasmas. In: Razin R, Tully JG, editors. Molecular and diagnostic procedures in mycoplasmology, vol. I. San Diego: Academic Press; 1995. p. 369–80.

    Chapter  Google Scholar 

  24. Streten C, Gibb KS. Genetic variation in ‘Candidatus Phytoplasma australiense’. Plant Pathol. 2005;54:8–14.

    Article  CAS  Google Scholar 

  25. Tamura K, Dudley J, Nei M, Kumar S. MEGA 4.0: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties, and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.

    Article  PubMed  CAS  Google Scholar 

  27. Verdin E, Salar P, Danet JL, Choueiri E, Jreijiri F, El Zammar S, Gélie B, Bové JM, Garnier M. ‘Candidatus Phytoplasma phoenicium’ sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. Int J Syst Evol Microbiol. 2003;53:833–8.

    Article  PubMed  CAS  Google Scholar 

  28. Wang K, Hiruki C. Molecular characterization and classification of phytoplasmas associated with canola yellows and a new phytoplasma strain associated with dandelions. Plant Dis. 2001;85:76–9.

    Article  CAS  Google Scholar 

  29. Wei W, Davis RE, Lee IM, Zhao Y. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol. 2007;57:1855–67.

    Article  PubMed  CAS  Google Scholar 

  30. Zhao Y, Wei W, Lee IM, Shao J, Suo X, Davis RE. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol. 2009;59:2582–93.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao Y, Wei W, Davis RE, Lee IM. Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. In: Weintraub PG, Jones P, editors. Phytoplasmas genomes, plant hosts and vectors. Wallingford: CAB International; 2010. p. 64–92.

    Google Scholar 

Download references

Acknowledgment

We thank Dr. R.K. Jain, Head Division of Plant Pathology, for providing the facilities and Dr. D.K. Yadava, Division of Genetics, IARI, New Delhi for his kind help in sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Baranwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azadvar, M., Baranwal, V.K. Molecular Characterization and Phylogeny of a Phytoplasma Associated with Phyllody Disease of toria (Brassica rapa L. subsp. dichotoma (Roxb.)) in India. Indian J. Virol. 21, 133–139 (2010). https://doi.org/10.1007/s13337-011-0023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-011-0023-6

Keywords

Navigation