Skip to main content
Log in

The nonlinear Schrödinger equation on the half-line with a Robin boundary condition

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The initial-boundary value problem for the nonlinear Schrödinger equation on the half-line with initial data in Sobolev spaces \(H^s(0, \infty )\), \(1/2< s\leqslant 5/2\), \(s\ne 3/2\), and Robin boundary data of appropriate regularity is shown to be locally well-posed in the sense of Hadamard. The proof is through a contraction mapping argument and hence relies crucially on certain estimates for the forced linear counterpart of the nonlinear problem. In particular, the essence of the analysis lies in the pure linear initial-boundary value problem, which corresponds to the case of zero forcing, zero initial data, and nonzero boundary data. This problem, which is studied by taking advantage of the solution formula derived via the unified transform of Fokas, holds an instrumental role in the overall analysis as it reveals the correct function space for the Robin boundary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Benney, D., Roskes, G.: Wave instabilities. Stud. Appl. Math. 48, 110 (1969)

    Article  MATH  Google Scholar 

  2. Bona, J., Sun, S., Zhang, B.-Y.: Nonhomogeneous boundary value problems of one-dimensional nonlinear Schrödinger equations. J. Math. Pures Appl. 109, 1–66 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Global Solutions of Nonlinear Schrödinger Equations, vol. 46. AMS Colloquium Publications, Providence (1999)

    MATH  Google Scholar 

  5. Cazenave, T., Weissler, F.: The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14, 807–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chabchoub, J., Hoffmann, N., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  7. Colliander, J., Kenig, C.: The generalized Korteweg-de Vries equation on the half-line. Commun. Partial Differ. Equ. 27, 2187–2266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, P., Saut, J.-C.: Local smoothing properties of Schrödinger equations. Indiana U. Math. J. 38, 781–810 (1989)

    Article  MATH  Google Scholar 

  9. Craig, W., Sulem, C., Sulem, P.-L.: Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity 5, 497–522 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deconinck, B., Sheils, N., Smith, D.: The linear KdV equation with an interface. Commun. Math. Phys. 347, 489–509 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deconinck, B., Trogdon, T., Vasan, V.: The method of Fokas for solving linear partial differential equations. SIAM Rev. 56, 159–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deift, P., Park, J.: Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int. Math. Res. Not. IMRN 2011, 5505–5624 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Erdogan, M., Tzirakis, N.: Regularity properties of the cubic nonlinear Schrödinger equation on the half line. J. Funct. Anal. 271, 2539–2568 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fokas, A.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. A 453, 1411–1443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fokas, A.: A unified approach to boundary value problems. SIAM 2, 16 (2008)

    MATH  Google Scholar 

  16. Fokas, A., Himonas, A., Mantzavinos, D.: The nonlinear Schrödinger equation on the half-line. Trans. Am. Math. Soc. 369, 681–709 (2017)

    Article  MATH  Google Scholar 

  17. Fokas, A., Himonas, A., Mantzavinos, D.: The Korteweg-de Vries equation on the half-line. Nonlinearity 29, 489–527 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fokas, A., Its, A., Sung, L.-Y.: The nonlinear Schrödinger equation on the half-line. Nonlinearity 18, 1771–1822 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fokas, A., Pelloni, B.: A transform method for linear evolution PDEs on a finite interval. IMA J. Appl. Math. 70, 564–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fokas, A., Spence, E.: Synthesis, as opposed to separation, of variables. SIAM Rev. 54, 291–324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghidaglia, J., Saut, J.-C.: Nonelliptic Schrödinger equations. J. Nonlin. Sci. 3, 169–195 (1993)

    Article  MATH  Google Scholar 

  22. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. II. Scattering theory, general case. J. Funct. Anal. 32, 33–71 (1979)

    Article  MATH  Google Scholar 

  23. Hardy, G.H.: Remarks in addition to Dr. Widder‘s note on inequalities. J. Lond. Math. Soc. 4, 199–202 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Japan 33, 805–811 (1972)

    Article  Google Scholar 

  25. Holmer, J.: The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line. Differ. Int. Equ. 18, 647–668 (2005)

    MATH  Google Scholar 

  26. Himonas, A., Mantzavinos, D.: The good Boussinesq equation on the half-line. J. Differ. Equ. 258, 3107–3160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Himonas, A., Mantzavinos, D.: Well-posedness of the nonlinear Schrödinger equation on the half-plane. Nonlinearity 33, 5567–5609 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Himonas, A., Mantzavinos, D., Yan, F.: The nonlinear Schrödinger equation on the half-line with Neumann boundary conditions. Appl. Numer. Math. 141, 2–18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Himonas, A., Mantzavinos, D., Yan, F.: The Korteweg-de Vries equation on an interval. J. Math. Phys. 60, 051507 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Himonas, A., Mantzavinos, D., Yan, F.: Initial-boundary value problems for a reaction-diffusion equation. J. Math. Phys. 60, 081509 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kalimeris, K., Ozsari, T.: An elementary proof of the lack of null controllability for the heat equation on the half line. Appl. Math. Lett. 104, 106241 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Theor. 46, 113–129 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Kenig, C., Ponce, G., Vega, L.: Oscillatory integrals and regularity of dispersive equations. Indiana U. Math. J. 40, 33–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kenig, C., Ponce, G., Vega, L.: Small solutions to nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 10, 255–288 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics. AMS, London (2013)

    Book  MATH  Google Scholar 

  36. Lenells, J., Fokas, A.: The unified method: II. NLS on the half-line with t-periodic boundary conditions. J. Phys. A Math. Theor. 45, 195202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lenells, J., Fokas, A.: The unified method: III. Nonlinearizable problems on the interval. J. Phys. A Math. Theor. 45, 195203 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Universitext, Springer, Berlin (2009)

    MATH  Google Scholar 

  39. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  40. Peregrine, D.: Water waves, nonlinear Schrödinger equations and their solutions. J. Austral. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  42. Strichartz, R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Springer, Berlin (1999)

    MATH  Google Scholar 

  44. Talanov, V.: Self-focusing of electromagnetic waves in nonlinear media. Radiophysics 8, 254–257 (1964)

    Google Scholar 

  45. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. CBMS, New York (2005)

    Google Scholar 

  46. Trogdon, T., Biondini, G.: Evolution partial differential equations with discontinuous data. Quart. Appl. Math. 77, 689–726 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tsutsumi, Y.: \(L^2\)-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkcialaj Ekvacioj 30, 115–125 (1987)

    MathSciNet  MATH  Google Scholar 

  48. Zakharov, V.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Technol. Phys. 9, 190–194 (1968)

    Article  Google Scholar 

  49. Zakharov, V., Shabat, A.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 63–69 (1972)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant from the Simons Foundation (#524469 to Alex Himonas). Both authors are thankful to the anonymous reviewer of the manuscript for constructive remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dionyssios Mantzavinos.

Ethics declarations

Funding

This work was partially supported by a grant from the Simons Foundation (#524469 to Alex Himonas).

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himonas, A.A., Mantzavinos, D. The nonlinear Schrödinger equation on the half-line with a Robin boundary condition. Anal.Math.Phys. 11, 157 (2021). https://doi.org/10.1007/s13324-021-00589-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00589-y

Keywords

Mathematics Subject Classification

Navigation