Skip to main content
Log in

Energy bounds for codes in polynomial metric spaces

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article we present a unified treatment for obtaining bounds on the potential energy of codes in the general context of polynomial metric spaces (PM-spaces). The lower bounds we derive via the linear programming techniques of Delsarte and Levenshtein are universally optimal in the sense that they apply to a broad class of energy functionals and, in general, cannot be improved for the specific subspace. Tests are presented for determining whether these universal lower bounds (ULB) can be improved on larger spaces. Our ULBs are applicable on the Euclidean sphere, infinite projective spaces, as well as Hamming and Johnson spaces. Asymptotic results for the ULB for the Euclidean spheres and the binary Hamming space are derived for the case when the cardinality and dimension of the space grow large in a related way. Our results emphasize the common features of the Levenshtein’s universal upper bounds for the cardinality of codes with given separation and our ULBs for energy. We also introduce upper bounds for the energy of designs in PM-spaces and the energy of codes with given separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For recent generalizations of Gegenbauer polynomials. see [34]

  2. A finite PM-space \(\mathcal {M}\) is called decomposable [40] if there exist a positive integer \(\ell \ge 2\) and metric subspaces \(\mathcal {M}_i\), \(i=1,\ldots ,\ell \), of \(\mathcal {M}\), such that the following three conditions are satisfied: \(\mathcal {M}=\cup _{i=1}^\ell \mathcal {M}_i\), each \(\mathcal {M}_i\) is isometric to the same \(\widetilde{\mathcal {M}}\) with the same standard substitution \(\sigma \), and for any \(x,y \in \mathcal {M}\) the number of the subspaces \(\mathcal {M}_i\) containing simultaneously x and y is equal to \(\frac{\ell |\widetilde{\mathcal {M}}|(\sigma (d(x,y)+1)}{2|\mathcal {M}|}\).

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  2. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin, Menlo Park (1984)

    MATH  Google Scholar 

  3. Bannai, Ei, Bannai, Et, Tanaka, H., Zhu, Y.: Design theory from the viewpoint of Algebraic Combinatorics. Graphs Comb. 33, 1–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodachov, S., Hardin, D., Saff, E.: Discrete Energy on Rectifiable Sets. Springer, New York (2019)

    MATH  Google Scholar 

  6. Boumova, S., Danev, D.: On the asymptotic behaviour of a necessary condition for existence of spherical designs. In: Processing of International Workshop ACCT, Sept. 8–14, pp. 54–57 (2002)

  7. Boyvalenkov, P., Danev, D.: On maximal codes in polynomial metric spaces. In: Proceesing of AAECC-12, Lecture Notes in Computer Science, vol. 1255, pp. 29–38 . Springer Berlin (1997)

  8. Boyvalenkov, P., Danev, D.: On linear programming bounds for codes in polynomial metric spaces. Probl. Peredachi Inf. 34(2), 16–31 (1998) (in Russian); English translation in Probl. Inf. Transm. 34, 108–120 (1998)

  9. Boyvalenkov, P., Danev, D., Bumova, S.: Upper bounds on the minimum distance of spherical codes. IEEE Trans. Inf. Theory 42, 1576–1581 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: Universal upper and lower bounds on energy of spherical designs. Dolomites Res. Notes Approx. 8, 51–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: Universal lower bounds for potential energy of spherical codes. Constr. Approx. 44, 385–415 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: Energy bounds for codes and designs in Hamming spaces. Des. Codes Cryptogr. 81, 411–431 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: On spherical codes with inner products in a prescribed interval. Des. Codes Cryptogr. 87(2–3), 299–315 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance Regular Graphs. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  15. Cameron, P.J., Goethals, J.-M., Seidel, J.J.: The Krein condition, spherical designs, Norton algebras and permutation groups. Indag. Math. (Proc.) 81, 196–206 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chebyshev, P.: Sur l’interpolation des valeurs équidistantes. In: Markoff, A.; Sonin, N., Oeuvres de P. L. Tchebychef 2, 219–242 (1907) (Reprinted by Chelsea)

  17. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohn, H., Woo, J.: Three-point bounds for energy minimization. J. Am. Math. Soc. 25, 929–958 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York (1988)

    Book  MATH  Google Scholar 

  20. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 1973(10), 95–97 (1973)

    MathSciNet  MATH  Google Scholar 

  21. Delsarte, P.: Bounds for unrestricted codes by linear programming. Philips Res. Rep. 27, 272–289 (1972)

    MathSciNet  MATH  Google Scholar 

  22. Delsarte, P.: Four fundamental parameters of a code and their combinatorial significance. Inf. Control 23, 407–438 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Delsarte, P., Goethals, J.-M., Seidel, J.J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. 30, 91*–105* (1975)

    MATH  Google Scholar 

  24. Delsarte, P., Goethals, J.-M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. Trans. Inf. Theory 44, 2477–2504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dunkl, C.F.: Discrete quadrature and bounds on \(t\)-design. Mich. Math. J. 26, 81–102 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Godsil, C.D.: Polynomial spaces. Discrete Math. 73, 71–88 (1988–1989)

  28. Godsil, C.D.: Algebraic Combinatorics. Chapman Hall/CRC Mathematics Series, London (1993)

    MATH  Google Scholar 

  29. Hahn, W.: Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachr. 2, 4–34 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hedayat, A., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999)

    Book  MATH  Google Scholar 

  31. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Acadamic Press, New York (1978)

    MATH  Google Scholar 

  32. Hoggar, S.G.: \(t\)-designs in projective spaces. Eur. J. Comb. 3, 233–254 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kabatianskii, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space. Probl. Inf. Transm. 14, 1–17 (1978)

    MathSciNet  Google Scholar 

  34. Koelink, E., de los Ríos, A. M., Román, P.: Matrix valued Gegenbauer type polynomials. Constr. Approx. 46(3), 459–487 (2017)

  35. Krawtchouk, M.: Sur une généralisation des polynômes d’Hermite. Comptes Rendus 189, 620–622 (1929)

    MATH  Google Scholar 

  36. Leonard, D.A.: Orthogonal polynomials, duality and association schemes. SIAM J. Math. 13, 656–663 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. Leonard, D.A.: Parameters of association schemes that are both P- and Q-polynomial. J. Comb. Theory Ser. A 36, 355–363 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Levenshtein, V.I.: On bounds for packings in \(n\)-dimensional Euclidean space. Soviet Math. Dokl. 20, 417–421 (1979)

    MATH  Google Scholar 

  39. Levenshtein, V.I.: Bounds for packings in metric spaces and certain applications. Probl. Kibernetiki 40, 44–110 (1983). (in Russian)

    Google Scholar 

  40. Levenshtein, V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl. Math. 25, 1–82 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Levenshtein, V.I.: Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces. IEEE Trans. Inf. Theory 41, 1303–1321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Levenshtein, V.I.: Universal bounds for codes and designs. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, Ch. 6, pp. 499–648. Elsevier, Amsterdam (1998)

    Google Scholar 

  43. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  44. McEliece, R.J., Rodemich, E.R., Rumsey, H.C., Welch, L.R.: New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Inf. Theory 23, 157–166 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. Neumaier, A.: Combinatorial configurations in terms of distances. Memorandum 81-09 (Dept. Math.), Eindhoven University of Technology (1981)

  46. Pless, V.S., Huffman, W.C. (eds.): Handbook of Coding Theory. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  47. Rao, C.R.: Factorial experiments derivable from combinatorial arrangements of arrays. J. R. Stat. Soc. 89, 128–139 (1947)

    MathSciNet  MATH  Google Scholar 

  48. Ray-Chaudhuri, D.K., Wilson, R.M.: On \(t\)-designs. Osaka J. Math. 12, 737–744 (1975)

    MathSciNet  MATH  Google Scholar 

  49. Sidel’nikov, V.M.: On extremal polynomials used to estimate the size of codes. Probl. Inf. Transm. 16, 174–186 (1980)

    MATH  Google Scholar 

  50. Sloane, N.J.A.: Recent bounds for codes, sphere packings and related problems obtained by linear programming and other methods. Contemp. Math. 9, 153–185 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. Szegő, G.: Orthogonal Polynomials, vol. 23. AMS Col. Publ., Providence (1939)

    MATH  Google Scholar 

  52. Terwilliger, P.: A characterization of P- and Q-polynomial schemes. J. Comb. Theory A 45, 8–26 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vilenkin, N.J.: Special Functions and the Theory of Group Representations, Nauka, Moscow (1965) (in Russian); English translation. American Mathematical Society, Providence (1968)

  54. Wang, H.-C.: Two-point homogeneous spaces. Ann. Math. 55, 177–191 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yudin, V.A.: Minimum potential energy of a point system of charges. Discret. Mat. 4, 115–121 (1992) (in Russian); English translation: Discrete Math. Appl. 3, 75–81 (1993)

Download references

Acknowledgements

Research for this article was conducted while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the “Point Configurations in Geometry, Physics and Computer Science” program supported by the National Science Foundation under Grant No. DMS-1439786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Saff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Dedicated to Stephen J. Gardiner on the occasion of his 60th Birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first and fifth authors was supported, in part, by a Bulgarian NSF contract DN02/2-2016. The research of the second author was supported, in part, by a Simons Foundation Grant No. 282207. The research of the third and fourth authors was supported, in part, by the U. S. National Science Foundation under Grant DMS-1516400.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P. et al. Energy bounds for codes in polynomial metric spaces. Anal.Math.Phys. 9, 781–808 (2019). https://doi.org/10.1007/s13324-019-00313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-019-00313-x

Keywords

Mathematics Subject Classification

Navigation