Skip to main content
Log in

Population Pharmacokinetic Studies of Digoxin in Adult Patients: A Systematic Review

  • Systematic Review
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Digoxin is a cardiac glycoside that was introduced to cardiovascular medicine more than 200 years ago. Its use is associated with large variability, which complicates achieving the desired therapeutic outcomes.

Objectives

To present a synthesis of the available literature on the population pharmacokinetics of digoxin in adults and to identify the sources of variability in its pharmacokinetics.

Methods

This is a PROSPERO registered systematic review (CRD42018105300). A literature search was conducted using the ISI Web of Science, Science Direct, PubMed, and SCOPUS databases to identify digoxin population pharmacokinetic studies of adults that utilized the nonlinear mixed-effect modeling approach.

Results

Sixteen articles were included in the present analysis. Only two studies were conducted in elderly subjects as a separate population. Both the pharmacokinetics and pharmacodynamics of digoxin were investigated in one study. Furthermore, the reviewed studies were mostly conducted in East Asian populations (68.8%). Digoxin's pharmacokinetics were usually described by a one-compartment model because of the nature of the collected data. Weight, age, kidney function, presence of heart failure, and co-administered medications such as calcium channel blockers were the most commonly identified predictors of digoxin clearance. The value of apparent clearance in a typical study individual ranged from 0.005 to 0.2 l/h/kg, while the value of the apparent volume of distribution ranged from 3.14 to 15.2 l/kg. The quality of model evaluation was deemed excellent only in 31.3% of the studies.

Conclusion

This review provides information about variables that need to be considered when prescribing digoxin. The results highlight the need for prospective studies that allow two-compartment pharmacokinetic/pharmacodynamic models to be established, with a special focus on the elderly subpopulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benjamin EJ, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137(12):E67–492.

    Article  PubMed  Google Scholar 

  2. Batul SA, Gopinathannair R. Atrial fibrillation in heart failure: a therapeutic challenge of our times. Korean Circ J. 2017;47(5):644–62.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Angraal S, et al. Digoxin use and associated adverse events among older adults. Am J Med. 2019;132(10):1191–8.

    Article  CAS  PubMed  Google Scholar 

  4. Garg R, Gorlin R, Smith T, Yusuf S. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336(8):525–33.

    Article  Google Scholar 

  5. Chavey WE, Hogikyan RV, Harrison RV, Nicklas JM. Heart failure due to reduced ejection fraction: medical management. Am Fam Physician. 2017;95(1):13–20.

    PubMed  Google Scholar 

  6. Bavendiek U, Aguirre Davila L, Koch A, Bauersachs J. Assumption versus evidence: the case of digoxin in atrial fibrillation and heart failure. Eur Heart J. 2017;38(27):2095–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Karthikeyan G, et al. Digoxin and clinical outcomes in the Global Rheumatic Heart Disease Registry. Heart. 2019;105(5):363–9.

    CAS  PubMed  Google Scholar 

  8. Yilmaz İ, Bilgili S, Bozkaya G. Evaluation of digoxin levels in elderly patients in a training hospital: an 11-year follow-up. Turk Geriatr Derg. 2020;23(1):108–17.

    Article  Google Scholar 

  9. de Moraes ERFL, et al. Prevalence of atrial fibrillation and stroke risk assessment based on telemedicine screening tools in a primary healthcare setting. Eur J Intern Med. 2019;67:36–41.

    Article  PubMed  Google Scholar 

  10. Hanratty CG, McGlinchey P, Johnston GD, Passmore AP. Differential pharmacokinetics of digoxin in elderly patients. Drugs Aging. 2000;17(5):353–62.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng JWM, Rybak I. Use of digoxin for heart failure and atrial fibrillation in elderly patients. Am J Geriatr Pharmacother. 2010;8(5):419–27.

    Article  CAS  PubMed  Google Scholar 

  12. Abdel Jalil MH, Abdullah N, Alsous MM, Saleh M, Abu-Hammour K. A systematic review of population pharmacokinetic analyses of digoxin in the paediatric population. Br J Clin Pharmacol. 2020;86(7):1267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanji S, et al. Reporting guidelines for clinical pharmacokinetic studies: the ClinPK statement. Clin Pharmacokinet. 2015;54(7):783–95.

    Article  PubMed  Google Scholar 

  14. Brendel K, et al. Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004. Clin Pharmacokinet. 2007;46(3):221–34.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yukawa M, et al. Determination of digoxin clearance in Japanese elderly patients for optimization of drug therapy. Drugs Aging. 2011;28(10):831–41.

    Article  CAS  PubMed  Google Scholar 

  16. Chen R, Wang SZM. Population pharmacokinetics of digoxin in elderly patients. Eur J Drug Metab Pharmacokinet. 2012;38(2):115–21.

    Article  PubMed  CAS  Google Scholar 

  17. Komatsu T, et al. Population pharmacokinetics and optimization of the dosing regimen of digoxin in adult patients. J Pharm Heal Care Sci. 2015;1(1):25.

    Article  Google Scholar 

  18. Du P, et al. Impact of SLCO4C1 genotypes, creatinine, and spironolactone on digoxin population pharmacokinetic variables in patients with cardiac insufficiency. Clin Ther. 2020;42(9):1799-1810.e3.

    Article  CAS  PubMed  Google Scholar 

  19. Yukawa E, Honda T, Ohdo S, Higuchi S, Aoyama T. Population-based investigation of relative clearance of digoxin in Japanese patients by multiple trough screen analysis: an update. J Clin Pharmacol. 1997;37(2):92–100.

    Article  CAS  PubMed  Google Scholar 

  20. Hornestam B, Jerling M, Karlsson MO, Held P, DAAf Trial Group. Intravenously administered digoxin in patients with acute atrial fibrillation: a population pharmacokinetic pharmacodynamic analysis based on the Digitalis in acute atrial fibrillation trial. Eur J Clin Pharmacol. 2003;58(11):747–55.

    Article  CAS  PubMed  Google Scholar 

  21. Carlton LD, Patterson JH, Mattson CN, Schmith VD. The effects of epoprostenol on drug disposition I: a pilot study of the pharmacokinetics of digoxin with and without epoprostenol in patients with congestive heart failure. J Clin Pharmacol. 1996;36(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  22. Williams PJ, Lane J, Murray W, Mergener MA, Kamigaki M. Pharmacokinetics of the digoxin-quinidine interaction via mixed-effect modelling. Clin Pharmacokinet. 1992;22(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  23. Suematsu F, et al. Pharmacoepidemiologic detection of calcium channel blocker-induced change on digoxin clearance using multiple trough screen analysis. Biopharm Drug Dispos. 2002;23(5):173–81.

    Article  CAS  PubMed  Google Scholar 

  24. Choi SA, Yun HY, Lee ES, Shin WG. A population pharmacokinetic analysis of the influence of nutritional status of digoxin in hospitalized Korean patients. Clin Ther. 2014;36(3):389–400.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou X, Gao Y, Guan Z, Li Z, Li J. Population pharmacokinetic model of digoxin in older Chinese patients and its application in clinical practice. Acta Pharmacol Sin. 2010;31(6):753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yukawa E, et al. Population pharmacokinetics of digoxin in Japanese patients: a 2-compartment pharmacokinetic model. Clin Pharmacokinet. 2001;40(10):773–81.

    Article  CAS  PubMed  Google Scholar 

  27. Nagaraja NV, Park YJ, Jeon S, Sands CD, Derendorf H. Population pharmacokinetics of digoxin in Korean patients. Int J Clin Pharmacol Ther. 2000;38(6):291–7.

    Article  CAS  PubMed  Google Scholar 

  28. Bauer LA, Horn JR, Pettit H. Mixed-effect modeling for detection and evaluation of drug interactions: digoxin-quinidine and digoxin-verapamil combinations. Ther Drug Monit. 1996;18(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  29. Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5(5):445–79.

    Article  CAS  PubMed  Google Scholar 

  30. Yukawa E, Mine H, Higuchi S, Aoyama T. Digoxin population pharmacokinetics from routine clinical data: role of patient characteristics for estimating dosing regimens. J Pharm Pharmacol. 1992;44(9):761–5.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmed A, et al. Digoxin and reduction in mortality and hospitalization in heart failure: a comprehensive post hoc analysis of the DIG trial. Eur Heart J. 2006;27(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  32. Mulder BA, et al. Digoxin in patients with permanent atrial fibrillation: data from the RACE II study. Hear Rhythm. 2014;11(9):1543–50.

    Article  Google Scholar 

  33. Turakhia MP, et al. Increased mortality associated with digoxin in contemporary patients with atrial fibrillation: findings from the TREAT-AF study. J Am Coll Cardiol. 2014;64(7):660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chao T-F, et al. Rate-control treatment and mortality in atrial fibrillation. Circulation. 2015;132(17):1604–12.

    Article  CAS  PubMed  Google Scholar 

  35. Whitbeck MG, et al. Increased mortality among patients taking digoxin—analysis from the AFFIRM study. Eur Heart J. 2013;34(20):1481–8.

    Article  CAS  PubMed  Google Scholar 

  36. Gheorghiade M, et al. Lack of evidence of increased mortality among patients with atrial fibrillation taking digoxin: findings from post hoc propensity-matched analysis of the AFFIRM trial. Eur Heart J. 2013;34(20):1489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Washam JB, et al. Digoxin use in patients with atrial fibrillation and adverse cardiovascular outcomes: a retrospective analysis of the Rivaroxaban Once Daily Oral Direct Factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation (ROCKET AF). Lancet. 2015;385(9985):2363–70.

    Article  CAS  PubMed  Google Scholar 

  38. DiDomenico RJ. Should digoxin continue to be used for the management of atrial fibrillation? Can J Hosp Pharm. 2017;70(5):391–4.

    Google Scholar 

  39. Marsot A, Guilhaumou R, Riff C, Blin O. Amikacin in critically ill patients: a review of population pharmacokinetic studies. Clin Pharmacokinet. 2017;56(2):127–38.

    Article  CAS  PubMed  Google Scholar 

  40. Bauer L. Applied clinical pharmacokinetics. 3rd ed. New York: McGraw Hill; 2008.

    Google Scholar 

  41. Naafs MA, et al. Decreased renal clearance of digoxin in chronic congestive heart failure. Eur J Clin Pharmacol. 1985;28(3):249–52.

    Article  CAS  PubMed  Google Scholar 

  42. Pedersen KE, Dorph-Pedersen A, Hvidt S, Klitgaard NA, Pedersen KK. The long-term effect of verapamil on plasma digoxin concentration and renal digoxin clearance in healthy subjects. Eur J Clin Pharmacol. 1982;22(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hedman A, Angelin B, Arvidsson A, Dahlqvist R. Digoxin-interactions in man: spironolactone reduces renal but not biliary digoxin clearance. Eur J Clin Pharmacol. 1992;42(5):481–5.

    Article  CAS  PubMed  Google Scholar 

  44. Talameh JA, Lanfear DE. Pharmacogenetics in chronic heart failure: new developments and current challenges. Curr Heart Fail Rep. 2012;9(1):23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oni-Orisan A, Lanfear DE. Pharmacogenomics in heart failure: where are we now and how can we reach clinical application? Cardiol Rev. 2014;22(5):193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hsin C, et al. Combinations of common SNPs of the transporter gene ABCB1 influence apparent bioavailability, but not renal elimination of oral digoxin. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-69326-y.

    Article  PubMed  PubMed Central  Google Scholar 

  47. DeFrance A, Armbruster D, Petty D, Cooper KC, Dasgupta A. Abbott ARCHITECT clinical chemistry and immunoassay systems: digoxin assays are free of interferences from spironolactone, potassium canrenoate, and their common metabolite canrenone. Ther Drug Monit. 2011;33(1):128–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Abdel Jalil.

Ethics declarations

Funding

No funding was received to conduct this review.

Conflicts of interest

The authors have no conflicts to declare

Availability of data and material

Extracted data are presented in the text.

Code availability

Not applicable.

Authors' contributions

Conceptualization: M.A.J. Conducting the review: M.A.J., N.A., M.A., K.A. Data analysis: M.A.J., N.A., M.A. Writing the manuscript: M.A.J., N.A., M.A., K.A. Reviewing and approving the manuscript: M.A.J., N.A., M.A., K.A.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 892 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Jalil, M., Abdullah, N., Alsous, M. et al. Population Pharmacokinetic Studies of Digoxin in Adult Patients: A Systematic Review. Eur J Drug Metab Pharmacokinet 46, 325–342 (2021). https://doi.org/10.1007/s13318-021-00672-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-021-00672-6

Navigation