Skip to main content

Advertisement

Log in

Pharmacogenetics in Chronic Heart Failure: New Developments and Current Challenges

  • Pharmacologic Therapy (W. H. Wilson Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The individual patient responses to chronic heart failure (HF) pharmacotherapies are highly variable. This variability cannot be entirely explained by clinical characteristics, and genetic variation may play a role. Therefore, this review will summarize the background pharmacogenetic literature for major HF pharmacotherapy classes (ie, β-blockers, angiotensin-converting enzyme inhibitors, digoxin, and loop diuretics), evaluate recent advances in the HF pharmacogenetic literature in the context of previous findings, and discuss the challenges and conclusions for HF pharmacogenetic data and its clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. MacFadyen RJ, Lee AF, Morton JJ, et al. How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure? Heart. 1999;82(1):57–61.

    PubMed  CAS  Google Scholar 

  2. Chen L, Meyers D, Javorsky G, et al. Arg389Gly-beta1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenet Genomics. 2007;17(11):941–9.

    Article  PubMed  CAS  Google Scholar 

  3. Mielniczuk LM, Tsang SW, Desai AS, et al. The association between high-dose diuretics and clinical stability in ambulatory chronic heart failure patients. J Card Fail. 2008;14(5):388–93.

    Article  PubMed  CAS  Google Scholar 

  4. Rathore SS, Curtis JP, Wang Y, et al. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289(7):871–8.

    Article  PubMed  CAS  Google Scholar 

  5. MERIT-HF Investigators. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353(9169):2001–7.

    Article  Google Scholar 

  6. The SOLVD. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD investigators. N Engl J Med. 1991;325(5):293–302.

    Article  Google Scholar 

  7. Lanfear DE, McLeod HL. Pharmacogenetics: using DNA to optimize drug therapy. Am Fam Physician. 2007;76(8):1179–82.

    PubMed  Google Scholar 

  8. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med. 2011;364(12):1144–53.

    Article  PubMed  CAS  Google Scholar 

  9. Mason DA, Moore JD, Green SA, et al. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J Biol Chem. 1999;274(18):12670–4.

    Article  PubMed  CAS  Google Scholar 

  10. Mialet-Perez J, Rathz DA, Petrashevskaya NN, et al. Beta 1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med. 2003;9(10):1300–5.

    Article  PubMed  Google Scholar 

  11. Terra SG, Hamilton KK, Pauly DF, et al. Beta1-adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet Genomics. 2005;15(4):227–34.

    Article  PubMed  CAS  Google Scholar 

  12. Luo M, Bi Y, Xu YX. Effects of metoprolol on beta1 adrenergic receptor polymorphism and receptor density in urban Chinese patients with heart failure. Chin Med J (Engl). 2007;120(19):1720–3.

    CAS  Google Scholar 

  13. Liggett SB, Mialet-Perez J, Thaneemit-Chen S, et al. A polymorphism within a conserved beta(1)-adrenergic receptor motif alters cardiac function and beta-blocker response in human heart failure. Proc Natl Acad Sci U S A. 2006;103(30):11288–93.

    Article  PubMed  CAS  Google Scholar 

  14. Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med. 2001;344(22):1659–67.

    Article  Google Scholar 

  15. Bristow MR, Krause-Steinrauf H, Nuzzo R, et al. Effect of baseline or changes in adrenergic activity on clinical outcomes in the beta-blocker evaluation of survival trial. Circulation. 2004;110(11):1437–42.

    Article  PubMed  CAS  Google Scholar 

  16. Biolo A, Clausell N, Santos KG, et al. Impact of beta1-adrenergic receptor polymorphisms on susceptibility to heart failure, arrhythmogenesis, prognosis, and response to beta-blocker therapy. Am J Cardiol. 2008;102(6):726–32.

    Article  PubMed  CAS  Google Scholar 

  17. • Sehnert AJ, Daniels SE, Elashoff M, et al. Lack of association between adrenergic receptor genotypes and survival in heart failure patients treated with carvedilol or metoprolol. J Am Coll Cardiol. 2008;52(8):644–651. This was a large observational cohort that found in mostly treated HF patients, there was no association of common variants in adrenergic receptors with survival.

    Article  PubMed  CAS  Google Scholar 

  18. White HL, de Boer RA, Maqbool A, et al. An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail. 2003;5(4):463–8.

    Article  PubMed  CAS  Google Scholar 

  19. Bristow MR, Ginsburg R, Umans V, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986;59(3):297–309.

    PubMed  CAS  Google Scholar 

  20. Green SA, Turki J, Innis M, et al. Amino-terminal polymorphisms of the human beta 2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry. 1994;33(32):9414–9.

    Article  PubMed  CAS  Google Scholar 

  21. Green SA, Turki J, Bejarano P, et al. Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 1995;13(1):25–33.

    PubMed  CAS  Google Scholar 

  22. Kaye DM, Smirk B, Williams C, et al. Beta-adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure. Pharmacogenetics. 2003;13(7):379–82.

    Article  PubMed  CAS  Google Scholar 

  23. Troncoso R, Moraga F, Chiong M, et al. Gln(27)– > Glubeta(2)-adrenergic receptor polymorphism in heart failure patients: differential clinical and oxidative response to carvedilol. Basic Clin Pharmacol Toxicol. 2009;104(5):374–8.

    Article  PubMed  CAS  Google Scholar 

  24. Metra M, Covolo L, Pezzali N, et al. Role of beta-adrenergic receptor gene polymorphisms in the long-term effects of beta-blockade with carvedilol in patients with chronic heart failure. Cardiovasc Drugs Ther. 2010;24(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  25. de Groote P, Helbecque N, Lamblin N, et al. Association between beta-1 and beta-2 adrenergic receptor gene polymorphisms and the response to beta-blockade in patients with stable congestive heart failure. Pharmacogenet Genomics. 2005;15(3):137–42.

    Article  PubMed  Google Scholar 

  26. Nonen S, Okamoto H, Fujio Y, et al. Polymorphisms of norepinephrine transporter and adrenergic receptor alpha1D are associated with the response to beta-blockers in dilated cardiomyopathy. Pharmacogenomics J. 2008;8(1):78–84.

    Article  PubMed  CAS  Google Scholar 

  27. Shin J, Lobmeyer MT, Gong Y, et al. Relation of beta(2)-adrenoceptor haplotype to risk of death and heart transplantation in patients with heart failure. Am J Cardiol. 2007;99(2):250–5.

    Article  PubMed  CAS  Google Scholar 

  28. Liggett SB, Wagoner LE, Craft LL, et al. The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest. 1998;102(8):1534–9.

    Article  PubMed  CAS  Google Scholar 

  29. Neumeister A, Charney DS, Belfer I, et al. Sympathoneural and adrenomedullary functional effects of alpha2C-adrenoreceptor gene polymorphism in healthy humans. Pharmacogenet Genomics. 2005;15(3):143–9.

    Article  PubMed  CAS  Google Scholar 

  30. •• Bristow MR, Murphy GA, Krause-Steinrauf H, et al. An alpha2C-adrenergic receptor polymorphism alters the norepinephrine-lowering effects and therapeutic response of the beta-blocker bucindolol in chronic heart failure. Circ Heart Fail. 2010;3(1):21–28. This was a large (n = 1040) pharmacogenetic substudy of the BEST trial. They found bucindolol lowered cardiovascular mortality in ADRA2C-insertion homozygotes but not deletion carriers.

    Article  PubMed  CAS  Google Scholar 

  31. Lobmeyer MT, Gong Y, Terra SG, et al. Synergistic polymorphisms of beta1 and alpha2C-adrenergic receptors and the influence on left ventricular ejection fraction response to beta-blocker therapy in heart failure. Pharmacogenet Genomics. 2007;17(4):277–82.

    Article  PubMed  CAS  Google Scholar 

  32. Kohout TA, Lefkowitz RJ. Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol. 2003;63(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  33. •• Liggett SB, Cresci S, Kelly RJ, et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med. 2008;14(5):510–517. This paper consisted of in vitro, case–control, and prospective observational studies. The authors found no difference in transplant-free survival in GRK5 Leu41-carriers regardless of BB treatment status. Also, BB-naïve Leu41-carriers had longer transplant-free survival than BB-naïve Gln41 homozygotes.

    Article  PubMed  CAS  Google Scholar 

  34. •• Cresci S, Kelly RJ, Cappola TP, et al. Clinical and genetic modifiers of long–term survival in heart failure. J Am Coll Cardiol. 2009;54(5):432–444. This was a large (n = 2460) pharmacogenetic study of ADRB1, Arg389Gly, and GRK5 Gln41Leu. The authors found that these genetic variants, rather than race, are the major contributors to the difference in BB treatment effect in African-Americans and Caucasians.

    Article  PubMed  CAS  Google Scholar 

  35. • Baudhuin LM, Miller WL, Train L, et al. Relation of ADRB1, CYP2D6, and UGT1A1 polymorphisms with dose of, and response to, carvedilol or metoprolol therapy in patients with chronic heart failure. Am J Cardiol. 2010;106(3):402–408. This recent study found that common variants in ADRB1, CYP2D6, and UGT1A1 were not associated with a clinical response to metoprolol or carvedilol therapy, but variants in ADRB1 and CYP2D6, alone and in haplotype, were significantly associated with the dose of carvedilol.

    Article  PubMed  CAS  Google Scholar 

  36. • Petersen M, Andersen JT, Hjelvang BR, et al. Association of beta-adrenergic receptor polymorphisms and mortality in carvedilol-treated chronic heart-failure patients. Br J Clin Pharmacol. 2011;71(4):556–565. This recent study demonstrates that there may be differential pharmacogenetic interaction depending on specific BB, as there was a significant interaction with carvedilol and not metoprolol.

    Article  PubMed  CAS  Google Scholar 

  37. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.

    Article  PubMed  CAS  Google Scholar 

  38. O’Toole L, Stewart M, Padfield P, et al. Effect of the insertion/deletion polymorphism of the angiotensin-converting enzyme gene on response to angiotensin-converting enzyme inhibitors in patients with heart failure. J Cardiovasc Pharmacol. 1998;32(6):988–94.

    Article  PubMed  Google Scholar 

  39. Cicoira M, Zanolla L, Rossi A, et al. Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype. J Am Coll Cardiol. 2001;37(7):1808–12.

    Article  PubMed  CAS  Google Scholar 

  40. Tang WH, Vagelos RH, Yee YG, et al. Impact of angiotensin-converting enzyme gene polymorphism on neurohormonal responses to high- versus low-dose enalapril in advanced heart failure. Am Heart J. 2004;148(5):889–94.

    Article  PubMed  CAS  Google Scholar 

  41. McNamara DM, Holubkov R, Postava L, et al. Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J Am Coll Cardiol. 2004;44(10):2019–26.

    Article  PubMed  CAS  Google Scholar 

  42. Tiago AD, Badenhorst D, Skudicky D, et al. An aldosterone synthase gene variant is associated with improvement in left ventricular ejection fraction in dilated cardiomyopathy. Cardiovasc Res. 2002;54(3):584–9.

    Article  PubMed  CAS  Google Scholar 

  43. Cuoco MA, Pereira AC, Mota Gde F, et al. Genetic polymorphism, medical therapy and sequential cardiac function in patients with heart failure. Arq Bras Cardiol. 2008;90(4):252–6.

    Article  PubMed  Google Scholar 

  44. • Wu CK, Luo JL, Tsai CT, et al. Demonstrating the pharmacogenetic effects of angiotensin-converting enzyme inhibitors on long-term prognosis of diastolic heart failure. Pharmacogenomics J. 2010;10(1):46–53. This paper extends the pharmacogenetic interaction between the ACE insertion/deletion and ACE inhibitors to HF patients with preserved LVEF.

    Article  PubMed  CAS  Google Scholar 

  45. Vormfelde SV, Engelhardt S, Zirk A, et al. CYP2C9 polymorphisms and the interindividual variability in pharmacokinetics and pharmacodynamics of the loop diuretic drug torsemide. Clin Pharmacol Ther. 2004;76(6):557–66.

    Article  PubMed  CAS  Google Scholar 

  46. Vormfelde SV, Schirmer M, Hagos Y, et al. Torsemide renal clearance and genetic variation in luminal and basolateral organic anion transporters. Br J Clin Pharmacol. 2006;62(3):323–35.

    Article  PubMed  CAS  Google Scholar 

  47. Vormfelde SV, Toliat MR, Schirmer M, et al. The polymorphisms Asn130Asp and Val174Ala in OATP1B1 and the CYP2C9 allele *3 independently affect torsemide pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;83(6):815–7.

    Article  PubMed  CAS  Google Scholar 

  48. Vormfelde SV, Sehrt D, Toliat MR, et al. Genetic variation in the renal sodium transporters NKCC2, NCC, and ENaC in relation to the effects of loop diuretic drugs. Clin Pharmacol Ther. 2007;82(3):300–9.

    Article  PubMed  CAS  Google Scholar 

  49. Werner D, Werner U, Meybaum A, et al. Determinants of steady-state torasemide pharmacokinetics: impact of pharmacogenetic factors, gender and angiotensin II receptor blockers. Clin Pharmacokinet. 2008;47(5):323–32.

    Article  PubMed  CAS  Google Scholar 

  50. • Vormfelde SV, Brockmoller J. The genetics of loop diuretic effects. Pharmacogenomics J. 2010; [Epub ahead of print]. This paper demonstrates that genetic variation seems to be a stronger predictor of the loop diuretic drug response than pharmacokinetic variation.

  51. Heart Failure Society of America. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16(6):e1–e194.

    Article  Google Scholar 

  52. Birkenfeld AL, Jordan J, Hofmann U, et al. Genetic influences on the pharmacokinetics of orally and intravenously administered digoxin as exhibited by monozygotic twins. Clin Pharmacol Ther. 2009;86(6):605–8.

    Article  PubMed  CAS  Google Scholar 

  53. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000;97(7):3473–8.

    Article  PubMed  CAS  Google Scholar 

  54. Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther. 2002;72(5):584–94.

    Article  PubMed  CAS  Google Scholar 

  55. Kurata Y, Ieiri I, Kimura M, et al. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002;72(2):209–19.

    Article  PubMed  CAS  Google Scholar 

  56. Verstuyft C, Schwab M, Schaeffeler E, et al. Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur J Clin Pharmacol. 2003;58(12):809–12.

    PubMed  CAS  Google Scholar 

  57. Comets E, Verstuyft C, Lavielle M, et al. Modelling the influence of MDR1 polymorphism on digoxin pharmacokinetic parameters. Eur J Clin Pharmacol. 2007;63(5):437–49.

    Article  PubMed  CAS  Google Scholar 

  58. Larsen UL, Hyldahl Olesen L, Guldborg Nyvold C, et al. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin. Scand J Clin Lab Invest. 2007;67(2):123–34.

    Article  PubMed  CAS  Google Scholar 

  59. Xu P, Jiang ZP, Zhang BK, et al. Impact of MDR1 haplotypes derived from C1236T, G2677T/A and C3435T on the pharmacokinetics of single-dose oral digoxin in healthy Chinese volunteers. Pharmacology. 2008;82(3):221–7.

    Article  PubMed  CAS  Google Scholar 

  60. • Aarnoudse AJ, Dieleman JP, Visser LE, et al. Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics. 2008;18(4):299–305. This paper extended the digoxin pharmacogenetic findings from single-dose healthy volunteer studies to a population of steady-state digoxin-using patients. They found that the common ABCB1 C1236T, G2677T, and C3435T variants and the associated TTT haplotype were associated with higher SDC.

    Article  PubMed  CAS  Google Scholar 

  61. Gerloff T, Schaefer M, Johne A, et al. MDR1 genotypes do not influence the absorption of a single oral dose of 1 mg digoxin in healthy white males. Br J Clin Pharmacol. 2002;54(6):610–6.

    Article  PubMed  CAS  Google Scholar 

  62. Chowbay B, Li H, David M, et al. Meta-analysis of the influence of MDR1 C3435T polymorphism on digoxin pharmacokinetics and MDR1 gene expression. Br J Clin Pharmacol. 2005;60(2):159–71.

    Article  PubMed  CAS  Google Scholar 

  63. Horinouchi M, Sakaeda T, Nakamura T, et al. Significant genetic linkage of MDR1 polymorphisms at positions 3435 and 2677: functional relevance to pharmacokinetics of digoxin. Pharm Res. 2002;19(10):1581–5.

    Article  PubMed  CAS  Google Scholar 

  64. Sakaeda T, Nakamura T, Horinouchi M, et al. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm Res. 2001;18(10):1400–4.

    Article  PubMed  CAS  Google Scholar 

  65. • Neuvonen AM, Palo JU, Sajantila A. Post-mortem ABCB1 genotyping reveals an elevated toxicity for female digoxin users. Int J Legal Med. 2011;125(2):265–269. This recent paper demonstrates that the pharmacogenetic interaction between ABCB1 C3435T and digoxin may be sex-specific.

    Article  PubMed  Google Scholar 

  66. Adams Jr KF, Patterson JH, Gattis WA, et al. Relationship of serum digoxin concentration to mortality and morbidity in women in the digitalis investigation group trial: a retrospective analysis. J Am Coll Cardiol. 2005;46(3):497–504.

    Article  PubMed  CAS  Google Scholar 

  67. McNamara DM, Holubkov R, Janosko K, et al. Pharmacogenetic interactions between beta-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation. 2001;103(12):1644–8.

    PubMed  CAS  Google Scholar 

  68. Borjesson M, Magnusson Y, Hjalmarson A, et al. A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J. 2000;21(22):1853–8.

    Article  PubMed  CAS  Google Scholar 

  69. Terra SG, Pauly DF, Lee CR, et al. beta-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther. 2005;77(3):127–37.

    Article  PubMed  CAS  Google Scholar 

  70. Magnusson Y, Levin MC, Eggertsen R, et al. Ser49Gly of beta1-adrenergic receptor is associated with effective beta-blocker dose in dilated cardiomyopathy. Clin Pharmacol Ther. 2005;78(3):221–31.

    Article  PubMed  CAS  Google Scholar 

  71. Muthumala A, Drenos F, Elliott PM, et al. Role of beta adrenergic receptor polymorphisms in heart failure: systematic review and meta-analysis. Eur J Heart Fail. 2008;10(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  72. Littlejohn MD, Palmer BR, Richards AM, et al. Ile164 variant of beta2-adrenoceptor does not influence outcome in heart failure but may interact with beta blocker treatment. Eur J Heart Fail. 2008;10(1):55–9.

    Article  PubMed  CAS  Google Scholar 

  73. Taylor MR, Slavov D, Humphrey K, et al. Pharmacogenetic effect of an endothelin-1 haplotype on response to bucindolol therapy in chronic heart failure. Pharmacogenet Genomics. 2009;19(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  74. Cicoira M, Rossi A, Bonapace S, et al. Effects of ACE gene insertion/deletion polymorphism on response to spironolactone in patients with chronic heart failure. Am J Med. 2004;116(10):657–61.

    Article  PubMed  CAS  Google Scholar 

  75. de Denus S, Zakrzewski-Jakubiak M, Dube MP, et al. Effects of AGTR1 A1166C gene polymorphism in patients with heart failure treated with candesartan. Ann Pharmacother. 2008;42(7):925–32.

    Article  PubMed  Google Scholar 

  76. McNamara DM, Tam SW, Sabolinski ML, et al. Aldosterone synthase promoter polymorphism predicts outcome in African Americans with heart failure: results from the A-HeFT Trial. J Am Coll Cardiol. 2006;48(6):1277–82.

    Article  PubMed  CAS  Google Scholar 

  77. McNamara DM, Tam SW, Sabolinski ML, et al. Endothelial nitric oxide synthase (NOS3) polymorphisms in African Americans with heart failure: results from the A-HeFT trial. J Card Fail. 2009;15(3):191–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

No potential conflicts of interest related to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Lanfear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talameh, J.A., Lanfear, D.E. Pharmacogenetics in Chronic Heart Failure: New Developments and Current Challenges. Curr Heart Fail Rep 9, 23–32 (2012). https://doi.org/10.1007/s11897-011-0076-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-011-0076-2

Keywords

Navigation