Skip to main content
Log in

Folate–Gold–Bilirubin Nanoconjugate Induces Apoptotic Death in Multidrug-Resistant Oral Carcinoma Cells

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Gold nanoparticles (GNPs) are receiving increasing attention as drug delivery carriers due to their high surface-to-volume ratio, hydrophilicity, and functionality. Drug delivery by nanocarriers has the potential to bypass P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) by altering the drug internalization mechanism and/or intracellular release pattern, inhibiting the activity of ABC-transporter efflux pumps, or downregulating the expression of genes responsible for the activity of efflux pumps.

Objective

We developed a folate–gold–bilirubin (FGB) nanoconjugate to reverse MDR in P-expressing KB-ChR-8-5 cells.

Methods

The P-gp overexpressing KB-ChR-8-5 cells were incubated with the FGB nanoconjugate, bilirubin, or GNPs. Various cellular endpoints, such as cytotoxicity, ROS generation, DNA damage, and apoptosis, were analyzed using analytical methods. Further, a KB-ChR-8-5 cell-bearing tumor xenograft was developed and the anticancer potential of the prepared FGB nanoparticles was compared to that of bilirubin or GNPs in this preclinical model.

Results

The FGB nanoconjugate was found to be a stronger inhibitor of the viability of multidrug-resistant KB-ChR-8-5 cells than bilirubin and GNPs treatment alone. The nanoconjugate induced reactive oxygen species (ROS) formation, DNA strand breaks, and apoptotic morphological changes in the P-gp-overexpressing drug-resistant cells to a greater degree than bilirubin treatment alone. Also, the FGB nanoparticles led to stronger suppression of tumor development in the KB-ChR-8-5 xenograft mouse model than achieved with bilirubin treatment alone. Thus, the present results suggest that the FGB nanoconjugate suppresses tumor growth in drug-resistant tumor cells by inducing apoptotic cell death.

Conclusion

FGB nanoparticles significantly inhibit tumor growth, probably through the folate receptor, which is highly expressed in KB cells. Hence, folate–gold–bilirubin nanoparticles could be a promising agent for inducing apoptosis in P-gp-overexpressing drug-resistant cancer cells.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anshup A, Venkatraaman JS, Chandramouli S, Pradeep T. Growth of gold nanoparticles in human cells. Langmuir. 2005;21(25):11562–7.

    Article  CAS  PubMed  Google Scholar 

  2. Barañano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci. 2002;99(25):16093–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Binkhathlan Z, Shayeganpour A, Brocks DR, Lavasanifar A. Encapsulation of P-glycoprotein inhibitors by polymeric micelles can reduce their pharmacokinetic interactions with doxorubicin. Eur J Pharm Biopharm. 2012;81(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  4. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bugde P, Biswas R, Merien F, Lu J, Liu DX, Chen M, Zhou S, Li Y. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. Expert Opin Ther Targets. 2017;21(5):511–30.

    Article  PubMed  Google Scholar 

  6. Callaghan R, Luk F, Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab Dispos. 2014;42(4):623–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Caruso F, Hyeon T, Rotello VM. Nanomedicine. Chem Soc Rev. 2012;41(7):2537–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chen D, Monteiro-Riviere NA, Zhang LW. Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(2):e1419.

    Article  CAS  Google Scholar 

  9. Dharmatti R, Phadke C, Mewada A, Pandey S, Oza G, Sharon C, Sharon M. Surface orchestration of gold nanoparticles using cysteamine as linker and folate as navigating molecule for synaptic delivery of doxorubicin. J Nanomed Res. 2014;1(1):1–7.

    Google Scholar 

  10. Didziapetris R, Japertas P, Avdeef A, Petrauskas A. Classification analysis of P-glycoprotein substrate specificity. J Drug Target. 2003;11(7):391–406.

    Article  CAS  PubMed  Google Scholar 

  11. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14(1):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91(3):1071–121.

    Article  CAS  PubMed  Google Scholar 

  13. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53(1):615–27.

    Article  CAS  PubMed  Google Scholar 

  14. Gu YJ, Cheng J, Man CW, Wong WT, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomed Nanotechnol Biol Med. 2012;8(2):204–11.

    Article  CAS  Google Scholar 

  15. Hafer K, Iwamoto KS, Schiestl RH. Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations. Radiat Res. 2008;169(4):460–8.

    Article  CAS  PubMed  Google Scholar 

  16. Hong R, Han G, Fernández JM, Kim BJ, Forbes NS, Rotello VM. Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc. 2006;128(4):1078–9.

    Article  CAS  PubMed  Google Scholar 

  17. Jain S, Hirst DG, O’Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012;85(1010):101–13.

  18. Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, Kwon KI, Kim BH, Kim SK, Song GY, Jeong TC. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol. 2011;162(5):1096–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krishna AD, Mandraju RK, Kishore G, Kondapi AK. An efficient targeted drug delivery through apotransferrin loaded nanoparticles. PLoS One. 2009;4(10):e7240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kudgus AR, Bhattacharya R, Mukherjee P. Cancer nanotechnology: emerging role of gold nanoconjugates. Anticancer Agents Med Chem. 2011;11(10):965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lanvin O, Gouilleux F, Mullie C, Maziere C, Fuentes V, Bissac E, Dantin F, Maziere JC, Regnier A, Lassoued K, Gouilleux-Gruart V. Interleukin-7 induces apoptosis of 697 pre-B cells expressing dominant-negative forms of STAT5: evidence for caspase-dependent and-independent mechanisms. Oncogene. 2004;23(17):3040.

    Article  CAS  PubMed  Google Scholar 

  22. Lee Y, Lee S, Lee DY, Yu B, Miao W, Jon S. Multistimuli-responsive bilirubin nanoparticles for anticancer therapy. Angew Chem Int Ed. 2016;55(36):10676–80.

    Article  CAS  Google Scholar 

  23. Lee YK, Hong SM, Kim JS, Im JH, Min HS, Subramanyam E, Huh KM, Park SW. Encapsulation of CdSe/ZnS quantum dots in poly(ethylene glycol)-poly(D,L-lactide) micelle for biomedical imaging and detection. Macromol Res. 2007;15(4):330–6.

  24. Lin G, Mi P, Chu C, Zhang J, Liu G. Inorganic nanocarriers overcoming multidrug resistance for cancer theranostics. Adv Sci. 2016;3(11):1600134.

    Article  CAS  Google Scholar 

  25. Liu M, Law WC, Kopwitthaya A, Liu X, Swihart MT, Prasad PN. Exploring the amphiphilicity of PEGylated gold nanorods: mechanical phase transfer and self-assembly. Chem Commun. 2013;49(81):9350–2.

    Article  CAS  Google Scholar 

  26. Lo YL. Phospholipids as multidrug resistance modulators of the transport of epirubicin in human intestinal epithelial Caco-2 cell layers and everted gut sacs of rats. Biochem Pharmacol. 2000;60(9):1381–90.

    Article  CAS  PubMed  Google Scholar 

  27. Ma JS, Kim WJ, Kim JJ, Kim TJ, Ye SK, Song MD, Kang H, Kim DW, Moon WK, Lee KH. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-κB and IFN-β/STAT1 pathways in RAW264.7 cells. Nitric Oxide. 2010;23(3):214–9.

  28. Muthusamy G, Balupillai A, Ramasamy K, Shanmugam M, Gunaseelan S, Mary B, Prasad NR. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines. Eur J Pharmacol. 2016;786:194–203.

    Article  CAS  PubMed  Google Scholar 

  29. Ning L, Zhu B, Gao T. Gold nanoparticles: promising agent to improve the diagnosis and therapy of cancer. Curr Drug Metab. 2017;18(11):1055–67.

    Article  CAS  PubMed  Google Scholar 

  30. Ollinger R, Kogler P, Troppmair J, Hermann M, Wurm M, Drasche A, Konigsrainer I, Amberger A, Weiss H, Ofner D, Bach FH. Bilirubin inhibits tumor cell growth via activation of ERK. Cell Cycle. 2007;6(24):3078–85.

    Article  PubMed  Google Scholar 

  31. Rathinaraj P, Lee K, Park SY, Kang IK. Targeted images of KB cells using folate-conjugated gold nanoparticles. Nanoscale Res Lett. 2015;10(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol. 2016;142(11):2217–29.

    Article  CAS  PubMed  Google Scholar 

  33. Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, Gottesman MM. Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science. 1986;232(4750):643–5.

    Article  CAS  PubMed  Google Scholar 

  34. Shukla S, Ohnuma S, Ambudkar VS. Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets. 2011;12(5):621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh D, Singh D, Choi SM, Zo SM, Painuli RM, Kwon SW, Han SS. Effect of extracts of Terminalia chebula on proliferation of keratinocytes and fibroblasts cells: an alternative approach for wound healing. Evid Based Complement Altern Med. 2014;2014.

  36. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  37. Singh S, Prasad NR, Kapoor K, Chufan EE, Patel BA, Ambudkar SV, Talele TT. Design, synthesis, and biological evaluation of (S)-valine thiazole-derived cyclic and noncyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1). ChemBioChem. 2014;15(1):157–69.

  38. Sun J, Yeung CA, Tsang TY, Yau E, Luo K, Wu P, Wa JC, Fung KP, Kwok TT, Liu F. Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-κB in R-HepG2 cell line. PLoS One. 2012;7(8):e40720.

  39. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci. 1968;61(2):748–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano. 2011;5(5):3679–92.

    Article  CAS  PubMed  Google Scholar 

  41. Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D, Veal G, Astier A. Review of therapeutic drug monitoring of anticancer drugs part two—targeted therapies. Eur J Cancer. 2014;50(12):2020–36.

  42. Wu CP, Ohnuma S, Ambudkar VS. Discovering natural product modulators to overcome multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 2011;12(4):609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med. 2017;14(3):228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev. 2013;65(1):121–38.

    Article  CAS  PubMed  Google Scholar 

  45. Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47.

    Article  CAS  PubMed  Google Scholar 

  47. Yu BO, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 2017;4(3):212.

    Article  CAS  Google Scholar 

Download references

Funding

This project work was supported by the Centre for International Research and Innovation—Waikato Institute of Technology, Hamilton, New Zealand.

Author information

Authors and Affiliations

Authors

Contributions

PR and NRP conceived and designed all experiments. PR, MG, SG, SZ, and BH performed all of the experiments. PR and NRP wrote the manuscript.

Corresponding author

Correspondence to Pierson Rathinaraj.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinaraj, P., Muthusamy, G., Prasad, N.R. et al. Folate–Gold–Bilirubin Nanoconjugate Induces Apoptotic Death in Multidrug-Resistant Oral Carcinoma Cells. Eur J Drug Metab Pharmacokinet 45, 285–296 (2020). https://doi.org/10.1007/s13318-019-00600-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-019-00600-9

Navigation