Skip to main content

Advertisement

Log in

Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on “gold nanoparticles” and “folate targeting,” there are a few reports on “folate-conjugated gold nanoparticles” in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asadishad B, Vossoughi M, Alemzadeh I (2010) Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles. Ind Eng Chem Res 49(4):1958–1963

    Article  CAS  Google Scholar 

  • Bazak R et al (2014) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784

    Article  PubMed  PubMed Central  Google Scholar 

  • Bazak R et al (2014) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141(5):769–784

    Article  PubMed  PubMed Central  Google Scholar 

  • Begg A et al (1987) Radiosensitization in vitro by cis-diammine (1, 1-cyclobutanedicarboxylato) platinum (II)(carboplatin, JM8) and ethylenediammine-malonatoplatinum (II)(JM40). Radiother Oncol 9(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Beik J et al (2016) Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Phys E 81:308–314

    Article  CAS  Google Scholar 

  • Bertrand N et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bharali DJ, Mousa SA (2010) Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol Ther 128(2):324–335

    Article  CAS  PubMed  Google Scholar 

  • Biselli-Chicote P et al (2012) VEGF gene alternative splicing: pro-and anti-angiogenic isoforms in cancer. J Cancer Res Clin Oncol 138(3):363–370

    Article  CAS  PubMed  Google Scholar 

  • Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. Wiley, London

    Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Article  CAS  PubMed  Google Scholar 

  • Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf B 72(1):128–134

    Article  CAS  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Cai W et al (2008) Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl 1:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H-H et al (2015) Gold nanoprobes-based resonance rayleigh scattering assay platform: Sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression. Biosens Bioelectron 74:165–169

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H et al (2015) Gold nanoparticle-enhanced near infrared fluorescent nanocomposites for targeted bio-imaging. RSC Adv 5(1):20–26

    Article  CAS  Google Scholar 

  • Chithrani DB et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173(6):719–728

    Article  CAS  PubMed  Google Scholar 

  • Das M, Mohanty C, Sahoo SK (2009) Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 6(3):285–304

    Article  CAS  PubMed  Google Scholar 

  • del Burgo LS, Pedraz J, Orive G (2014) Advanced nanovehicles for cancer management. Drug Discov Today 19(10):1659–1670

    Article  Google Scholar 

  • Dharmatti R et al (2014) Surface orchestration of gold nanoparticles using cysteamine as linke r and folate as navigating molecule for synaphic delivery of doxorubicin. J Nanomed Res 1(1):00002

    Google Scholar 

  • Drouet F, Lagrange J-L (2010) Dose de tolérance à l’irradiation des tissus sains: la moelle osseuse. Cancer/Radiothérapie 14(4):392–404

    Article  CAS  Google Scholar 

  • Fazilati M (2014) Folate decorated magnetite nanoparticles: synthesis and targeted therapy against ovarian cancer. Cell Biol Int 38(2):154–163

    Article  CAS  PubMed  Google Scholar 

  • Garin-Chesa P et al (1993) Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 142(2):557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng J et al (2012) Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 8(15):2421–2429

    Article  CAS  PubMed  Google Scholar 

  • Ghaznavi H et al (2015) Association study of methylenetetrahydrofolate reductase C677T mutation with cerebral venous thrombosis in an Iranian population. Blood Coagul Fibrinolysis 26(8):869–873. doi:10.1097/MBC.0000000000000292

    Article  CAS  PubMed  Google Scholar 

  • Ghaznavi H et al (2015) The neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells. Neurol Res 37(7):624–632. doi:10.1179/1743132815Y.0000000037

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2005) The use of gold nanoparticles to enhance radiotherapy in mice. Cancer Res 65(9 Supplement):287

    Google Scholar 

  • Hainfeld JF et al (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60(8):977–986

    Article  CAS  PubMed  Google Scholar 

  • Hering K et al (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390(1):113–124

    Article  CAS  PubMed  Google Scholar 

  • Huang P et al (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32(36):9796–9809

    Article  CAS  PubMed  Google Scholar 

  • Huff TB et al (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132. doi:10.2217/17435889.2.1.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Hirst D, O’sullivan J (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85(1010):101–113. doi:10.1259/bjr/59448833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H et al (2012) Photothermal effects of folate-conjugated Au nanorods on HepG2 cells. Appl Microbiol Biotechnol 94(5):1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Kennedy LC et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  CAS  PubMed  Google Scholar 

  • Kerker M (2013) The scattering of light and other electromagnetic radiation: physical chemistry—a series of monographs, vol 16. Academic press, Cambridge

    Google Scholar 

  • Khoei S et al (2014) The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int J Radiat Biol 90(5):351–356

    Article  CAS  PubMed  Google Scholar 

  • Khoshgard K et al (2014) Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques. Phys Med Biol 59(9):2249

    Article  CAS  PubMed  Google Scholar 

  • Kirpotin DB et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66(13):6732–6740

    Article  CAS  PubMed  Google Scholar 

  • Kong T et al (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4(9):1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Kukowska-Latallo JF et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    Article  CAS  PubMed  Google Scholar 

  • Li J-L et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274(2):319–326

    Article  CAS  PubMed  Google Scholar 

  • Li R et al (2011) Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 49(5):1797–1805

    Article  CAS  Google Scholar 

  • Li W et al (2015) Radionuclide therapy using 131I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression. J Cancer Res Clin Oncol 142(3):619–632

    Article  PubMed  Google Scholar 

  • Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    Article  CAS  Google Scholar 

  • Liu C-J et al (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55(4):931

    Article  CAS  PubMed  Google Scholar 

  • Maeda H et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controll Release 65(1):271–284

    Article  CAS  Google Scholar 

  • Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdizadeh A et al (2014) The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci 29(3):939–948

    Article  PubMed  Google Scholar 

  • Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 15(19):842–850

    Article  CAS  PubMed  Google Scholar 

  • Mitra RN et al (2012) An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery. Biomaterials 33(5):1500–1508

    Article  CAS  PubMed  Google Scholar 

  • Pandey S et al (2013) Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater Sci Eng C 33(7):3716–3722

    Article  CAS  Google Scholar 

  • Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12(3):185–271

    Article  CAS  Google Scholar 

  • Parker N et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  CAS  PubMed  Google Scholar 

  • Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16(2):108–123

    Article  CAS  PubMed  Google Scholar 

  • Patra CR et al (2008) Application of gold nanoparticles for targeted therapy in cancer. J Biomed Nanotechnol 4(2):99–132

    CAS  Google Scholar 

  • Prabaharan M et al (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075

    Article  CAS  PubMed  Google Scholar 

  • Rahman WN et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5(2):136–142

    Article  CAS  Google Scholar 

  • Rathinaraj P et al (2015) Targeted images of KB cells using folate-conjugated gold nanoparticles. Nanoscale Res Lett 10(1):1–10

    Article  CAS  Google Scholar 

  • Rozenberg M, Shoham G (2007) FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys Chem 125(1):166–171

    Article  CAS  PubMed  Google Scholar 

  • Saw PE et al (2013) Aptide-conjugated liposome targeting tumor-associated fibronectin for glioma therapy. J Mater Chem B 1(37):4723–4726

    Article  CAS  Google Scholar 

  • Sha MY et al (2007) SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomedicine 2(5):725–734. doi:10.2217/17435889.2.5.725

    Article  CAS  PubMed  Google Scholar 

  • Shakeri-Zadeh A et al (2013) Targeted, monitored, and controlled chemotherapy: a multimodal nanotechnology-based approach against cancer. ISRN Nanotechnol 2013:5. doi:10.1155/2013/629510

    Article  Google Scholar 

  • Shakeri-Zadeh A et al (2009) Gold nanoparticles conjugated with folic acid using mercaptohexanol as the linker. JONPI 1:13–23

    Google Scholar 

  • Shakeri-Zadeh A, Ghasemifard M, Mansoori GA (2010a) Structural and optical characterization of folate-conjugated gold-nanoparticles. Phys E 42(5):1272–1280

    Article  Google Scholar 

  • Shakeri-Zadeh A et al (2010b) Cancerous cells targeting and destruction using folate-conjugated gold nanoparticles. Dyn Biochem Process Biotechnol Mol Biol 4(1):06–12

    Google Scholar 

  • Shakeri-Zadeh A et al (2014a) A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model. J Biomater Appl 29(4):548–556

    Article  PubMed  Google Scholar 

  • Shakeri-Zadeh A et al (2014b) A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer. Lasers Med Sci 29(2):847–853

    Article  PubMed  Google Scholar 

  • Shakeri-Zadeh A et al (2015a) Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J Mater Chem B 3(9):1879–1887

    Article  CAS  Google Scholar 

  • Shakeri-Zadeh A et al (2015b) Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. J Med Ultrason 42(1):9–16

    Article  Google Scholar 

  • Singhal S, Nie S, Wang MD (2010) Nanotechnology applications in surgical oncology. Annu Rev Med 61:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R et al (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar B et al (2014) Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. J Biomed Nanotechnol 10(6):885–899

    Article  CAS  PubMed  Google Scholar 

  • Soltanpour MS et al (2013) Methylenetetrahydrofolate reductase C677T mutation and risk of retinal vein thrombosis. J Res Med Sci 18(6):487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svaasand LO, Gomer CJ, Morinelli E (1990) On the physical rationale of laser induced hyperthermia. Lasers Med Sci 5(2):121–128

    Article  Google Scholar 

  • Syu WJ et al (2012) Improved photodynamic cancer treatment by folate-conjugated polymeric micelles in a KB xenografted animal model. Small 8(13):2060–2069

    Article  CAS  PubMed  Google Scholar 

  • Talekar M et al (2011) Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs 22(10):949–962

    Article  CAS  PubMed  Google Scholar 

  • Tiwari PM et al (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1(1):31–63

    Article  CAS  Google Scholar 

  • Tong L et al (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19(20):3136–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tork MB et al (2014) In situ green synthesis of silver nanoparticles/chitosan/poly vinyl alcohol/poly ethylene glycol hydrogel nanocomposite for novel finishing of nasal tampons. J Ind Text 45(6):1399–1416. doi:10.1177/1528083714560255

    Article  Google Scholar 

  • Veigele WJ (1973) Photon cross sections from 0.1 keV to 1 MeV for elements Z = 1 to Z = 94. Atomic Data Nucl Data Tables 5(1):51–111

    Article  Google Scholar 

  • Wang Y et al (2015) A photodynamic therapy combined with topical 5-aminolevulinic acid and systemic hematoporphyrin derivative is more efficient but less phototoxic for cancer. J Cancer Res Clin Oncol 142(4):813–821

    Article  PubMed  Google Scholar 

  • Yin M et al (2012) Water-dispersible multiwalled carbon nanotube/iron oxide hybrids as contrast agents for cellular magnetic resonance imaging. Carbon 50(6):2162–2170

    Article  CAS  Google Scholar 

  • Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin–PEG–folate conjugate. J Control Release 100(2):247–256

    Article  CAS  PubMed  Google Scholar 

  • Yu B et al (2010) Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 27(7):286–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z et al (2010) Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorganic Med Chem 18(15):5528–5534

    Article  CAS  Google Scholar 

  • Zhang X-Q et al (2012a) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-D et al (2012b) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33(27):6408–6419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Habib Ghaznavi or Ali Shakeri-Zadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samadian, H., Hosseini-Nami, S., Kamrava, S.K. et al. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 142, 2217–2229 (2016). https://doi.org/10.1007/s00432-016-2179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2179-3

Keywords

Navigation