Skip to main content
Log in

Pharmacokinetic Properties of Saffron and its Active Components

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Saffron as a medicinal plant has many therapeutic effects. Phytochemical studies have reported that saffron is composed of at least four active ingredients which include crocin, crocetin, picrocrocin and safranal. The carotenoids of saffron are sensitive to oxygen, light, heat and enzymatic oxidization. However, regulation of these factors is required for saffron quality. Some pharmacologic effects of saffron and its active compounds include cardioprotective, neuroprotective, memory enhancer, antidepressant and anxiolytic. Among more than 150 chemicals of saffron, the most biologically active components are two carotenoids including crocin and crocetin. Most of the pharmacokinetic studies are related to these compounds. The pharmacokinetic studies have shown that crocin is not available after oral administration in blood circulation. Crocin is converted to crocetin in intestine but after intravenous injection, the level of crocetin in plasma is low. Crocetin can distribute in different tissues because of weak interaction between crocetin and albumin. Also it can penetrate blood-brain barrier and reach CNS by passive transcellular diffusion; thus it can be effective in neurodegenerative disorders. The large portion of crocin is eliminated via feces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hosseinzadeh H, Nassiri-Asl M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review. Phytother Res. 2013;27(4):475–83.

    Article  PubMed  Google Scholar 

  2. Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol. 2014;64:65–80.

    Article  PubMed  CAS  Google Scholar 

  3. Li NG, Lin YW, Kwan Min ZD. Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A. 1999;849(2):349–55.

    Article  PubMed  CAS  Google Scholar 

  4. Caballero-Ortega H, Pereda-Miranda R, Riverón-Negrete L, Hernández JM, Medécigo-Ríos M, Castillo-Villanueva A. Chemical composition of saffron (Crocus sativus L.) from four countries. In: Fernández JA, Abdullaev FI (Eds.) Proceedings of the First International Symposium on Saffron Biology and Biotechnology, International Society for Horticultural Science, Leuven, 650, Acta Hort. 2004;321–326.

  5. Lechtenberg M, Schepmann D, Niehues M, Hellenbrand N, Wünsch B, Hensel A. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma-1 receptors. Planta Med. 2008;74(7):764–72.

    Article  PubMed  CAS  Google Scholar 

  6. Hadizadeh F, Mahdavi M, Emami SA, Noorbakhsh, R. Khashayarmanesh, Z, Hasanzadeh, M, Asili, J. Evaluation of ISO method in saffron quantification. In: Koosheki, Nassiri, Ghorbani (Eds.) Proceedings of the second international Symposium on Saffron Biology and Technology, Acta Hort (ISHS). 2007;739:405–410.

  7. Straubinger M, Bau B, Eckstein S, Fink M, Winterhalter P. Identification of novel glycosidic precursors in saffron. J Agric Food Chem. 1998;46(8):3238–43.

    Article  CAS  Google Scholar 

  8. Rios J, Recio M, Giner R, Manez S. An update review of saffron and its active constituents. Phytother Res. 1996;10(3):189–93.

    Article  CAS  Google Scholar 

  9. Rezaee R, Hosseinzadeh H. Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iran J Basic Med Sci. 2013;16(1):12–26.

    PubMed  PubMed Central  Google Scholar 

  10. Giaccio M. Crocetin from saffron: an active component of an ancient spice. Crit Rev Food Sci Nut. 2004;44(3):155–72.

    Article  CAS  Google Scholar 

  11. Hosseinzadeh H, Shamsaie F, Mehri S. Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L stigma and its bioactive constituents, crocin and safranal. Pharmacogn Mag. 2009;5(20):419–24.

    Google Scholar 

  12. Kanakis C, Tarantilis P, Tajimir-Riahi H, Polissiou M. Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. J Agric Food Chem. 2007;55(3):970–7.

    Article  PubMed  CAS  Google Scholar 

  13. Tseng T, Chu C, Huang J, Shiow S, Wang C. Crocetin protects against oxidative damage in rat primary hepatocytes. Cancer Lett. 1995;97(1):61–7.

    Article  PubMed  CAS  Google Scholar 

  14. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med. 2013;79(6):447–51.

    Article  PubMed  CAS  Google Scholar 

  15. Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol. 2011;49(10):1039–45.

    Article  PubMed  CAS  Google Scholar 

  16. Hosseinzadeh H, Sadeghnia H. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci. 2005;8(3):394–9.

    PubMed  CAS  Google Scholar 

  17. Hosseinzadeh H, Ziaei T. Effects of Crocus sativus stigma extract and its constituents, crocin and safranal, on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. J Med Plants. 2006;5(19):40–50.

    Google Scholar 

  18. Hosseinzadeh H, Karimi G, Niapoor M. Antidepressant effects of crocus sativus stigma extracts and its constituents, crocin and safranal, in mice. J Med Plants. 2004;3(11):48–58.

    Google Scholar 

  19. Hosseinzadeh H, Motamedshariaty V, Hadizadeh F. Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline. 2007;2:367–70.

    Google Scholar 

  20. Vahdati Hassani F, Naseri V, Razavi BM, Mehri S, Abnous K, Hosseinzadeh H. Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus. DARU J Pharm Sci. 2014;22(1):16.

    Article  CAS  Google Scholar 

  21. Hosseinzadeh H, Noraei N. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice. Phytother Res. 2009;23(6):768–74.

    Article  PubMed  CAS  Google Scholar 

  22. Hosseinzadeh H, Ziaee T, Sadeghnia H. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine. 2008;15(6–7):491–5.

    Article  PubMed  CAS  Google Scholar 

  23. Premkumar K, Abraham S, Santhiya S, Gopinath P. Inhibition of genotoxicity by saffron (Crocus sativus L.) in mice. Drug Chem Toxicol. 2001;24(4):421–8.

    Article  PubMed  CAS  Google Scholar 

  24. Hosseinzadeh H, Sadeghnia H. Effect of safranal, a constituent of Crocus sativus (saffron), on methyl methanesulfonate (MMS)-induced DNA damage in mouse organs: an alkaline single-cell gel electrophoresis (comet) assay. DNA Cell Biol. 2007;26(12):841–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hosseinzadeh H, Ghenaati J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia. 2006;77(6):446–8.

    Article  PubMed  Google Scholar 

  26. Razavi BM, Hosseinzadeh H, Movassaghi AR, Imenshahidi M, Abnous K. Protective effect of crocin on diazinon induced cardiotoxicity in rats in subchronic exposure. Chem Biol Inter. 2013;203(3):547–55.

    Article  CAS  Google Scholar 

  27. Mehdizadeh R, Parizadeh MR, Khooei AR, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci. 2013;16(1):56–63.

    PubMed  PubMed Central  Google Scholar 

  28. Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res. 2010;24(7):990–4.

    PubMed  CAS  Google Scholar 

  29. Razavi M, Hosseinzadeh H, Abnous K, Motamedshariaty VS, Imenshahidi M. Crocin restores hypotensive effect of subchronic administration of diazinon in rats. Iran J Basic Med Sci. 2013;16(1):64–72.

    PubMed  PubMed Central  Google Scholar 

  30. Vahdati Hassani F, Mehri S, Abnous K, Birner-Gruenberger R, Hosseinzadeh H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem Toxicol. 2017;107:395–405.

    Article  PubMed  CAS  Google Scholar 

  31. Khorasany AR, Hosseinzadeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iran J Basic Med Sci. 2016;19(5):455–69.

    PubMed  PubMed Central  Google Scholar 

  32. Amin B, Hosseini S, Hosseinzadeh H. Enhancement of antinociceptive effect by co-administration of amitriptyline and Crocus sativus in a rat model of neuropathic pain. Iran J Pharm Res. 2017;16(1):187–200.

    PubMed  PubMed Central  Google Scholar 

  33. Mehri S, Abnous K, Mousavi S, Shariaty V, Hosseinzadeh H. Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol. 2012;32(2):227–35.

    Article  PubMed  CAS  Google Scholar 

  34. Hosseinzadeh H, Sadeghnia HR, Rahimi A. Effect of safranal on extracellular hippocampal levels of glutamate and aspartate during kainic acid treatment in anesthetized rats. Planta Med. 2008;74(12):1441–5.

    Article  PubMed  CAS  Google Scholar 

  35. Sadeghnia HR, Cortez MA, Liu D, Hosseinzadeh H, Carter Snead O. Antiabsence effects of safranal in acute experimental seizure models: EEG and autoradiography. J Pharm Pharm Sci. 2008;11(3):1–14.

    Article  PubMed  CAS  Google Scholar 

  36. Kamyar M, Razavi BM, Vahdati Hasani F, Mehri S, Foroutanfar A, Hosseinzadeh H. Crocin prevents haloperidol-induced orofacial dyskinesia: possible an antioxidant mechanism. Iran J Basic Med Sci. 2016;19(10):1070–9.

    PubMed  PubMed Central  Google Scholar 

  37. Soeda S, Ochiai T, Paopong L, Tanaka H, Shoyama Y, Shimeno H. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells. Life Sci. 2001;69(24):2887–98.

    Article  PubMed  CAS  Google Scholar 

  38. Liakopoulou-Kyriakides M, Skubas A. Characterization of the platelet aggregation inducer and inhibitor isolated from Crocus sativus. Biochem Int. 1999;22(1):103–10.

    Google Scholar 

  39. Lee I, Lee J, Baek N, Kim D. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull. 2015;28(11):2106–10.

    Article  Google Scholar 

  40. He S, Qian Z, Tang F, Wen N, Xu G, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005;77(8):907–21.

    Article  PubMed  CAS  Google Scholar 

  41. Zheng S, Qian Z, Sheng L, Wen N. Crocetin attenuates atherosclerosis in hyperlipidemic rabbits through inhibition of LDL oxidation. J Cardiovasc Pharmacol. 2006;47(1):70–6.

    Article  PubMed  CAS  Google Scholar 

  42. Kazi H, Qian Z. Crocetin reduces TNBS-induced experimental colitis in mice by downregulation of NFkB. Saudi J Gastroenterol. 2009;15(3):181–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sheng L, Qian Z, Shi Y, Yang L, Xi L, Zhao B. Crocetin improves the insulin resistance induced by high-fat diet in rats. Br J Pharmacol. 2008;154(5):1016–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Boskabady M, Aslani M. Relaxant effect of Crocus sativus (saffron) on guinea pig tracheal chains and its possible mechanisms. J Pharm Pharmacol. 2006;58(10):1385–90.

    Article  PubMed  CAS  Google Scholar 

  45. Nemati H, Boskabady M, Ahmadzadef Vostakolaei H. Stimulatory effect of Crocus sativus (saffron) on b2-adrenoceptors of guinea pig tracheal chains. Phytomedicine. 2008;15(12):1038–45.

    Article  PubMed  CAS  Google Scholar 

  46. Boskabady M, Ghasemzadeh M. Inhibitory effect of safranal on histamine (H1) receptors of guinea pig tracheal chains. Fitoterapia. 2011;82:162–7.

    Article  PubMed  CAS  Google Scholar 

  47. Akhondzadeh S, Tahmacebi-Pour N, Noorbala AA, Amini H, Fallah-Pour H, Jamshidi AH, Khani M. Crocus sativus L. in the treatment of mild to moderate depression: a double-blind, randomized and placebo-controlled trial. Phytother Res. 2005;19:148–51.

    Article  PubMed  Google Scholar 

  48. Talaei A, Hassanpour Moghadam M, Sajadi Tabassi SA, Mohajeri SA. Crocin the main active saffron constituent as an adjunctive treatment in major depressive disorder. A randomized, double-blind, placebo-controlled, pilot clinical trial. J Affect Disord. 2015;174:51–3.

    Article  PubMed  CAS  Google Scholar 

  49. Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, Hejazi SSh, Yousefi MH, Alimardani R, Jamshidi A, Zare F, Moradi A. Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther. 2010;35:581–8.

    Article  PubMed  CAS  Google Scholar 

  50. Chatterjee S, Datta RN, Bhattacharyya D, Bandopadhyay SK. Emollient and antipruritic effect of Itch cream in dermatological disorders: a randomized controlled trial. Indian J Pharmacol. 2005;37:253–4.

    Article  Google Scholar 

  51. Shamsa A, Hosseinzadeh H, Molaei M, Shakeri M, Rajabi O. Evaluation of Crocus sativus L. (saffron) on male erectile dysfunction: a pilot study. Phytomedicine. 2009;16(8):690–3.

    Article  PubMed  Google Scholar 

  52. Agha-Hosseini M, Kashani L, Aleyaseen A, Ghoreishi A, Rahmanpour H, Zarrinara AR, Akhondzadeh S. Crocus sativus L. (saffron) in the treatment of premenstrual syndrome: a double-blind, randomized and placebo-controlled trial. BJOG. 2008;115:515–9.

    Article  PubMed  CAS  Google Scholar 

  53. Razavi BM, Hosseinzadeh H. Saffron as an antidote or a protective agent against natural or chemical toxicities. DARU. 2015;23:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric. 2017;97(6):1679–85.

    Article  PubMed  CAS  Google Scholar 

  55. Bostan HB, Mehri S, Hosseinzadeh H. Toxicology effects of saffron and its constituents: a review. Iran J Basic Med Sci. 2017;20(2):110–21.

    PubMed  PubMed Central  Google Scholar 

  56. Asai A, Nakano T, Takahashi M, Nagao A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem. 2005;53(18):7302–6.

    Article  PubMed  CAS  Google Scholar 

  57. Xi L, Qian Z, Du P, Fu J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine. 2007;14(9):633–6.

    Article  PubMed  CAS  Google Scholar 

  58. Ahn-Jarvis JH, Clinton SK, Grainger EM, Riedl KM, Schwartz SJ, Lee ML, Cruz-Cano R, Young GS. Isoflavone pharmacokinetics and metabolism after consumption of a standardized soy and soy-almond bread in men with asymptomatic prostate cancer. Cancer Prev Res. 2015;8(11):1045–54.

    Article  CAS  Google Scholar 

  59. Franke AA, Lai JF, Halm BM. Absorption, distribution, metabolism, and excretion of isoflavonoids after soy intake. Arch Biochem Biophys. 2014;559:24–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang Y, Liu JX, Lin L, Li LQ. Pharmacokinetics of crocin-1 after oral administration in rats. Chin Pharm J. 2012;47(2):136–40.

    CAS  Google Scholar 

  61. Li XY, Feng WL, Zhu JB, Nima CR. Effect of Tibetan medicine Zuotai on in vivo pharmacokinetics of crocin-1 in rats. Chin Trad Herb Drugs. 2009;40:1425–8.

    CAS  Google Scholar 

  62. Christodoulou E, Kakazanis Z, Kostomitsopoulos N, Dokoumetzidis A, Valsami G. Pharmacokinetics of Crocus sativus L. aqueous extract after per os and intravenous administration to C57/BL6J mice. 24th annual meeting. 2015; Hersonissos.

  63. Mohammadpour AH, Ramezani M, Tavakoli Anaraki N, Malaekeh-Nikouei B, Amel Farzad S, Hosseinzadeh H. Development and validation of HPLC method for determination of crocetin, a constituent of saffron, in human serum samples. Iran J Basic Med Sci. 2013;16(1):47–55.

    PubMed  PubMed Central  Google Scholar 

  64. Umigai N, Murakami K, Ulit M, Antonio L, Shirotori M, Morikawa H, Nakano T. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine. 2011;18(7):575–8.

    Article  PubMed  CAS  Google Scholar 

  65. Chryssanthi D, Lamari F, Georgakopoulos C, Cordopatis P. A new validated SPE-HPLC method for monitoring crocetin in human plasma–application after saffron tea consumption. J Pharm Biomed Anal. 2011;55(3):563–8.

    Article  PubMed  CAS  Google Scholar 

  66. Kostic D, White W, Olson J. Intestinal absorption, serum clearance, and interactions between lutein and beta-carotene when administered to human adults in separate or combined oral doses. Am J Clin Nutr. 1995;62(3):604–10.

    Article  PubMed  CAS  Google Scholar 

  67. Zhi J, Melia A, Koss-Twardy S, Arora S, Patel I. The effect of orlistat, an inhibitor of dietary fat absorption, on the pharmacokinetics of beta-carotene in healthy volunteers. J Clin Pharmacol. 1996;36(2):152–9.

    Article  PubMed  CAS  Google Scholar 

  68. Gustin D, Rodvold K, Sosman J, Diwadkar-Navsariwala V, Stacewicz-Sapuntzakis M, Viana M. Single-dose pharmacokinetic study of lycopene delivered in a well-defined food-based lycopene delivery system (tomato paste–oil mixture) in healthy adult male subjects. Cancer Epidemiol Biomark Prev. 2004;13(5):850–60.

    CAS  Google Scholar 

  69. Kyriakoudi A, O’Callaghan Y, Galvin K, Tsimidou M, O’Brien N. Cellular transport and bioactivity of a major saffron apocarotenoid, picrocrocin (4-(#-D-glucopyranosyloxy)-2,6,6-trimethyl–1–cyclohexane–1-carboxaldehyde). J Agric Food Chem. 2015;63(39):8662–8.

    Article  PubMed  CAS  Google Scholar 

  70. Parker R. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996;10(5):542–51.

    Article  PubMed  CAS  Google Scholar 

  71. Lautenschläger M, Sendker J, Hüwel S, Galla H, Brandt S, Düfer M. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Phytomedicine. 2015;22(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  72. Miller TL, Willett SL, Moss ME, Miller J, Belinka BA. Binding of crocetin to plasma albumin. J Pharm Sci. 1982;71(2):173–7.

    Article  PubMed  CAS  Google Scholar 

  73. Jafarisani M, Bathaie SZ, Mousavi MF. Saffron carotenoids (crocin and crocetin) binding to human serum albumin as investigated by different spectroscopic methods and molecular docking. J Biomol Struct Dyn. 2017;8:1–10.

    Google Scholar 

  74. Zhang Y, Fei F, Zhen L, Zhu X, Wang J, Li S. Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. J Chromatog B Anal Technol Biomed Life Sci. 2017;1044:1–7.

    Google Scholar 

  75. Lautenschläger M, Lechtenberg M, Sendker J, Hensel A. Effective isolation protocol for secondary metabolites from Saffron: semi-preparative scale preparation of crocin-1 and trans-crocetin. Fitoterapia. 2014;92:290–5.

    Article  PubMed  CAS  Google Scholar 

  76. Martin G, Goh E, Neff A. Evaluation of the developmental toxicity of crocetin on Xenopus. Food Chem Toxicol. 2002;40(7):959–64.

    Article  PubMed  CAS  Google Scholar 

  77. Winterhalter P. Flavor chemistry of saffron. Carotenoid-derived aroma compounds: ACS symposium series. Washington: American Chemical Society; 2001. p. 16.

    Book  Google Scholar 

  78. Souret F, Weathers P. Cultivation, in vitro culture, secondary metabolite production, and phytopharmacognosy of saffron (Crocus sativus L.). J Herbs Spices Med Plants. 1999;6(4):99–116.

    Article  Google Scholar 

  79. Tsimidou M. Kinetic studies of saffron (Crocus sativus L.) quality deterioration. J Agric Food Chem. 1997;45(8):2890–8.

    Article  CAS  Google Scholar 

  80. Alonso GL, Varon R, Salinas MR, Navarro F. Auto-oxidation of crocin and picrocrocin in saffron under different storage conditions. Boll Chim Farm. 1993;132(4):116–20.

    CAS  Google Scholar 

  81. Sanchez A, Carmona M, Jaren-Galan M, Miguez-Mosquera M, Alonso G. Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment. J Agric Food Chem. 2011;59(1):249–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Funding

There is no external source of funding for production of this manuscript.

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, A., Razavi, B.M. & Hosseinzadeh, H. Pharmacokinetic Properties of Saffron and its Active Components. Eur J Drug Metab Pharmacokinet 43, 383–390 (2018). https://doi.org/10.1007/s13318-017-0449-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-017-0449-3

Navigation