Skip to main content

Crocins

Properties and Applications

  • Living reference work entry
  • First Online:
Handbook of Food Bioactive Ingredients

Abstract

Crocin is a carotenoid component found in the stigmas of the Crocus sativus plant, which is also known as saffron. In addition to being employed as a taste ingredient, pharmacological studies have revealed a number of therapeutic qualities, including antimutagenic, neuroprotective, memory, and cognition-improving properties, as well as a few other benefits for saffron. Extensive research on crocin has examined the high bioactivities of this unique water-soluble carotenoid during the last 20–25 years. The current chapter presents a comprehensive and up-to-date report on empirical research about crocin bioactivities and biological features. The pharmacologic investigation of crocins in terms of structural characteristics and pharmacokinetics is comprehensively covered in this review, which also summarizes the disease-treating mechanisms. This text also contributes to the improvement of crocin stability and its usage as a functional ingredient with therapeutic effects on numerous human body systems, which could pave the way for industrial crocin generation and metabolic engineering-based crocin-rich functional meals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AChE inhibitors:

Acetylcholinesterase inhibitors

AGS:

Gastric adenocarcinoma

ATC:

Anaplastic thyroid cancer

Aβ1-42:

Amyloid beta1-42

CDKIs:

Cyclin-dependent kinase inhibitors

CDKs:

Cyclin-dependent kinases

CE:

Cholesteryl ester

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FAO/WHO:

Food and Agriculture Organization/World Health Organization

FOXO:

The forkhead box transcription factor class O

FTC:

Follicular thyroid cancer

GC:

Gas chromatography

Gent-MIP:

Gentiobiose imprinted polymer

GSH:

Glutathione peroxidase reducing activities

HPLC:

High performance liquid chromatography

IR:

Ischemia-reperfusion

JAK2/STAT3:

Janus kinase/signal transducer and activator of transcription

JNK:

C-Jun NH2-terminal kinases

LDL:

Low-density lipoprotein

LPO:

Lipid peroxidation

MDA:

Malondialdehyde

miRNAs:

MicroRNAs

MMPs:

Matrix metalloproteinases

MSC:

Mesenchymal stem cells

NAC:

N-acetyl-l-cysteine

NF-κB:

Nuclear factor kappa light chain enhancer of activated B cells

NMDA:

N-methyl-D-aspartate receptor

NO:

Nitric oxide

Nrf2:

Nuclear factor-erythroid 2-related factor 2

Ox-LDL:

Oxidatively modified low density lipoprotein

PTC:

Papillary thyroid cancer

PTPN4:

Protein Tyrosine Phosphatase Non-Receptor Type 4

ROS:

Reactive oxygen species

SMC:

Smooth muscle cells

SOD:

Superoxide dismutase

TC:

Thyroid cancer

TLC:

Thin layer chromatography

UPLC–MS/MS:

Ultra-high-performance liquid chromatography tandem mass spectrometry

References

  • Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res. 2000;14(3):149–52.

    Article  CAS  PubMed  Google Scholar 

  • Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol. 2014;64:65–80.

    Article  CAS  PubMed  Google Scholar 

  • Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: plant-based approaches for intervention. Phytother Res. 2018;32(10):1908–32.

    Article  PubMed  Google Scholar 

  • Almodóvar P, Briskey D, Rao A, Prodanov M, Inarejos-García AM. Bioaccessibility and pharmacokinetics of a commercial saffron (Crocus sativus L.). J Evid Based Complementary Altern Med. 2020;2020:1575730.

    Google Scholar 

  • Asai A, Nakano T, Takahashi M, Nagao A. Orally administered crocetin and crocins are absorbed into blood plasma as crocetin and its glucuronide conjugates in mice. J Agric Food Chem. 2005;53(18):7302–6.

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi M, Bathaie SZ, Abroun S, Azizian M. Effect of crocin on cell cycle regulators in N-nitroso-N-methylurea-induced breast cancer in rats. DNA Cell Biol. 2015;34(11):684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakshi H, Sam S, Rozati R, Sultan P, Islam T, Rathore B, et al. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pac J Cancer Prev. 2010;11(3):675–9.

    PubMed  Google Scholar 

  • Bathaie SZ, Sajjadi M. Comparative study on preventive effect of saffron carotenoids, crocin and crocetin, in NMU-induced breast cancer in rat. Cell J (Yakhteh). 2016;19:94–101.

    Google Scholar 

  • Bhandari PR. Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Tradit Complement Med. 2015;5(2):81–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 2007;100(3):1126–31.

    Article  CAS  Google Scholar 

  • Carmona M, Zalacain A, Pardo JE, López E, Alvarruiz A, Alonso GL. Influence of different drying and aging conditions on saffron constituents. J Agric Food Chem. 2005;53(10):3974–9.

    Article  CAS  PubMed  Google Scholar 

  • Champalal KD, Nilakshi N, Vijay GR, Abhyankar MM. Detailed profile of Crocus sativus. Int J Pharm Bio Sci. 2011;2(1):530–40.

    Google Scholar 

  • Chen S, Zhao S, Wang X, Zhang L, Jiang E, Gu Y, et al. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Transl Lung Cancer Res. 2015;4(6):775–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H-J, Park YS, Kim MG, Kim TK, Yoon NS, Lim YJ. Isolation and characterization of the major colorant in Gardenia fruit. Dyes Pigments. 2001;49(1):15–20.

    Article  CAS  Google Scholar 

  • Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P. Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res. 2007;27(1 A):357–62.

    CAS  PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92.

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro AM, Mancini A, Lizzi AR, De Simone A, Marroccella CE, Gravina GL, et al. Crocus sativus stigma extract and its major constituent crocin possess significant antiproliferative properties against human prostate cancer. Nutr Cancer. 2013;65(6):930–42.

    Article  PubMed  Google Scholar 

  • Dar RA, Brahman PK, Khurana N, Wagay JA, Lone ZA, Ganaie MA, et al. Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays. Arab J Chem. 2017;10:S1119–S28.

    Article  CAS  Google Scholar 

  • Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, et al. Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol. 2011;187(9):4788–99.

    Article  CAS  PubMed  Google Scholar 

  • Dhar A, Mehta S, Dhar G, Dhar K, Banerjee S, Van Veldhuizen P, et al. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. Mol Cancer Ther. 2009;8(2):315–23.

    Article  CAS  PubMed  Google Scholar 

  • El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol. 2017;50(1):212–22.

    Article  CAS  PubMed  Google Scholar 

  • Festuccia C, Mancini A, Gravina GL, Scarsella L, Llorens S, Alonso GL, et al. Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int. 2014;2014:135048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finley JW, Gao S. A perspective on Crocus sativus L. (saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem. 2017;65(5):1005–20.

    Article  CAS  PubMed  Google Scholar 

  • Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A, et al. Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J Agric Food Chem. 2012;60(24):6131–8.

    Article  CAS  PubMed  Google Scholar 

  • Ghadami MR, Pourmotabbed A. The effect of crocin on scopolamine induced spatial learning and memory deficits in rats. Physiol Pharmacol. 2009;12(4):287–95.

    Google Scholar 

  • Godugu C, Pasari LP, Khurana A, Anchi P, Saifi MA, Bansod SP, et al. Crocin, an active constituent of Crocus sativus ameliorates cerulein induced pancreatic inflammation and oxidative stress. Phytother Res. 2020;34(4):825–35.

    Article  CAS  PubMed  Google Scholar 

  • Gogvadze V, Orrenius S. Mitochondrial regulation of apoptotic cell death. Chem Biol Interact. 2006;163(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23(6):1625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadizadeh F, Mohajeri SA, Seifi M. Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak J Biol Sci. 2010;13(14):691–8.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  • He S-Y, Qian Z-Y, Tang F-T, Wen N, Xu G-L, Sheng L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005;77(8):907–21.

    Article  CAS  PubMed  Google Scholar 

  • Hensel A, Lechtenberg M, Schepmann D, Niehues M, Wünsch B, editors. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma-1 receptors. Planta medica, New York. 2008.

    Google Scholar 

  • Hirota S, Takahama U. Starch can inhibit nitrite-dependent oxidation of crocin in gastric lumen increasing bioavailability of carotenoids. Food Sci Technol Res. 2013;19(6):1121–6.

    Article  CAS  Google Scholar 

  • Hoshyar R, Bathaie SZ, M. S. Crocin triggers the apoptosis through increasing the Bax/Bcl-2 ratio and caspase activation in human gastric adenocarcinoma, AGS, cells. DNA Cell Biol. 2013;32(2):50–7.

    Article  CAS  PubMed  Google Scholar 

  • Hoshyar R, Khayati GR, Poorgholami M, Kaykhaii M. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J Photochem Photobiol B Biol. 2016;159:237–42.

    Article  CAS  Google Scholar 

  • Hosseinzadeh H, Jahanian Z. Effect of Crocus sativus L. (saffron) stigma and its constituents, crocin and safranal, on morphine withdrawal syndrome in mice. Phytother Res. 2010;24(5):726–30.

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Nassiri-Asl M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review. Phytother Res. 2013;27(4):475–83.

    Article  PubMed  Google Scholar 

  • Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A. Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci. 2005;8(3):387–93.

    CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Shariaty VM, Sameni AK, Vahabzadeh M. Acute and sub-acute toxicity of crocin, a constituent of Crocus sativus L. (saffron), in mice and rats. Pharmacology. 2010;2:943–51.

    Google Scholar 

  • Imenshahidi M, Hosseinzadeh H, Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res. 2010;24(7):990–4.

    Article  CAS  PubMed  Google Scholar 

  • Kalalinia F, Ghasim H, Amel Farzad S, Pishavar E, Ramezani M, Hashemi M. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci. 2018;208:262–7.

    Article  CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khorasanchi Z, Shafiee M, Kermanshahi F, Khazaei M, Ryzhikov M, Parizadeh MR, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine. 2018a;43:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Khorasanchi Z, Shafiee M, Kermanshahi F, Khazaei M, Ryzhikov M, Parizadeh MR, et al. Crocus sativus a natural food coloring and flavoring has potent anti-tumor properties. Phytomedicine. 2018b;43:21–7.

    Article  CAS  PubMed  Google Scholar 

  • Koulakiotis NS, Purhonen P, Gikas E, Hebert H, Tsarbopoulos A. Crocus-derived compounds alter the aggregation pathway of Alzheimer’s disease – associated beta amyloid protein. Sci Rep. 2020;10(1):18150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lage M, Cantrell CL. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic. 2009;121(3):366–73.

    Article  CAS  Google Scholar 

  • Lee I-A, Lee JH, Baek N-I, Kim D-H. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol Pharm Bull. 2005;28(11):2106–10.

    Article  CAS  PubMed  Google Scholar 

  • Li N, Lin G, Kwan Y-W, Min Z-D. Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A. 1999;849(2):349–55.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Shao Q, Lu Z, Duan C, Yi H, Su L. Rapid determination of crocins in saffron by near-infrared spectroscopy combined with chemometric techniques. Spectrochim Acta A Mol Biomol Spectrosc. 2018;190:283–9.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wu G, Zhang H, Qi X. Preparation of crocin nanocomplex in order to increase its physical stability. Food Hydrocoll. 2021;120:106415.

    Article  CAS  Google Scholar 

  • Liakopoulou-Kyriakides M, Kyriakidis DA. Croscus sativus-biological active constituents. In: Atta ur R, editor. Studies in natural products chemistry. 26: Elsevier; 2002. p. 293–312.

    Google Scholar 

  • Liu J, Qian Z. Effects of crocin on cholestane-3beta-5alpha-6beta-triol-induced apoptosis and related gene expression of cultured endothelial cells. J China Pharm Univ. 2005;36(3):254.

    CAS  Google Scholar 

  • Liu T, Yu S, Xu Z, Tan J, Wang B, Liu Y-G, et al. Prospects and progress on crocin biosynthetic pathway and metabolic engineering. Comput Struct Biotechnol J. 2020;18:3278–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Lin H, Gu Y, Li L, Guo H, Wang F, et al. Antitumor effects of crocin on human breast cancer cells. Int J Clin Exp Med. 2015;8(11):20316–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Qin H, Cui Y. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun. 2013;441(4):958–63.

    Article  CAS  PubMed  Google Scholar 

  • Magesh V, Singh JPV, Selvendiran K, Ekambaram G, Sakthisekaran D. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem. 2006;287(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  • Magesh V, DurgaBhavani K, Senthilnathan P, Rajendran P, Sakthisekaran D. In vivo protective effect of crocetin on benzo(a)pyrene-induced lung cancer in Swiss albino mice. Phytother Res. 2009;23(4):533–9.

    Article  CAS  PubMed  Google Scholar 

  • Mohajeri SA, Hosseinzadeh H, Keyhanfar F, Aghamohammadian J. Extraction of crocin from saffron (Crocus sativus) using molecularly imprinted polymer solid-phase extraction. J Sep Sci. 2010;33(15):2302–9.

    Article  CAS  PubMed  Google Scholar 

  • Mohamadpour AH, Ayati Z, Parizadeh M-R, Rajbai O, Hosseinzadeh H. Safety evaluation of crocin (a constituent of saffron) tablets in healthy volunteers. Iran J Basic Med Sci. 2013;16(1):39–46.

    PubMed  PubMed Central  Google Scholar 

  • Mousavi SZ, Bathaie SZ. Historical uses of saffron: identifying potential new avenues for modern research. Avicenna J Phytomed. 2011;1(2):57–66.

    Google Scholar 

  • Mousavi SH, Moallem SA, Mehri S, Shahsavand S, Nassirli H, Malaekeh-Nikouei B. Improvement of cytotoxic and apoptogenic properties of crocin in cancer cell lines by its nanoliposomal form. Pharm Biol. 2011;49(10):1039–45.

    Article  CAS  PubMed  Google Scholar 

  • Nafissi N, Khayamzadeh M, Zeinali Z, Pazooki D, Hosseini M, Akbari ME. Epidemiology and histopathology of breast cancer in Iran versus other middle eastern countries. Middle East J Cancer. 2018;9(3):243–51.

    Google Scholar 

  • Nasimian A, Farzaneh P, Tamanoi F, Bathaie SZ. Cytosolic and mitochondrial ROS production resulted in apoptosis induction in breast cancer cells treated with Crocin: the role of FOXO3a, PTEN and AKT signaling. Biochem Pharmacol. 2020;177:113999.

    Article  CAS  PubMed  Google Scholar 

  • Nasrpour S, Yousefi G, Niakosari M, Aminlari M. Nanoencapsulation of saffron crocin into chitosan/alginate interpolyelectrolyte complexes for oral delivery: a Taguchi approach to design optimization. J Food Sci. 2022;87(3):1148–60.

    Article  CAS  PubMed  Google Scholar 

  • Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H. Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci Lett. 2004;362(1):61–4.

    Article  CAS  PubMed  Google Scholar 

  • Orfanou O, Tsimidou M. Evaluation of the colouring strength of saffron spice by UV – vis spectrometry. Food Chem. 1996;57(3):463–9.

    Article  CAS  Google Scholar 

  • Pham TQ, Cormier F, Farnworth E, Van Tong H, Van Calsteren MR. Antioxidant properties of crocin from Gardenia jasminoides Ellis and study of the reactions of crocin with linoleic acid and crocin with oxygen. J Agric Food Chem. 2000;48(5):1455–61.

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N, Zisopoulou S, Tarantilis PA, Kanakis CD, Polissiou MG, Sakellaridis N. Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res. 2007;183(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  • Rahaiee S, Shojaosadati SA, Hashemi M, Moini S, Razavi SH. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Int J Biol Macromol. 2015;79:423–32.

    Article  CAS  PubMed  Google Scholar 

  • Rahaiee S, Hashemi M, Shojaosadati SA, Moini S, Razavi SH. Nanoparticles based on crocin loaded chitosan-alginate biopolymers: antioxidant activities, bioavailability and anticancer properties. Int J Biol Macromol. 2017;99:401–8.

    Article  CAS  PubMed  Google Scholar 

  • Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Med. 2013;79(6):447–51.

    Article  CAS  PubMed  Google Scholar 

  • Rezaee R, Mahmoudi M, Abnous K, Rabe SZT, Tabasi N, Hashemzaei M, et al. Cytotoxic effects of crocin on MOLT-4 human leukemia cells. J Complement Integr Med. 2013;10(1):105–12.

    Article  CAS  Google Scholar 

  • Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, et al. Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food. 2006;9(2):246–53.

    Article  PubMed  Google Scholar 

  • Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr. 2007;157(13):315.

    Article  PubMed  Google Scholar 

  • Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase. Eur J Pharmacol. 2006;543(1):116–22.

    Article  CAS  PubMed  Google Scholar 

  • Soeda S, Ochiai T, Tanaka H, Shoyama Y, Shimeno H. Prevention of ischemic neuron death by a saffron’s carotenoid pigment crocin and its mechanism of action. In: M. Coleman, R. (eds) Focus on Neurochemistry Research. 2005, Nova science, New York.

    Google Scholar 

  • Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H, et al. Pharmacological activities of crocin in saffron. J Nat Med. 2007;61(2):102–11.

    Article  CAS  Google Scholar 

  • Song Y-n, Wang Y, Zheng Y-h, Liu T-l, Zhang C. Crocins: a comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia. 2021;153:104969.

    Article  CAS  PubMed  Google Scholar 

  • Speranza G, Dad A, Span G, Manitto P, Monti D, Gramatica P. 13-cis-Crocin: a new crocinoid of saffron. Gazz Chim Ital. 1984;114:189–92.

    CAS  Google Scholar 

  • Sugiura M, Shoyama Y, Saito H, Nishiyama N. Crocin improves the ethanol-induced impairment of learning behaviors of mice in passive avoidance tasks. Proc Jpn Acad B. 1995;71(10):319–24.

    Article  Google Scholar 

  • Sun Y, Xu HJ, Zhao YX, Wang LZ, Sun LR, Wang Z, et al. Crocin exhibits antitumor effects on human leukemia HL-60 cells in vitro and in vivo. Evid Based Complement Alternat Med. 2013;2013:690164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Yang H, Yu J, Li Z, Xu Q, Ding B, et al. Crocin induces ROS-mediated papillary thyroid cancer cell apoptosis by modulating the miR-34a-5p/PTPN4 axis in vitro. Toxicol Appl Pharmacol. 2022;437:115892.

    Article  CAS  PubMed  Google Scholar 

  • Tarantilis PA, Polissiou MG. Isolation and identification of the aroma components from saffron (Crocus sativus). J Agric Food Chem. 1997;45(2):459–62.

    Article  CAS  Google Scholar 

  • Teppo HR, Soini Y, Karihtala P. Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxidative Med Cell Longev. 2017;2017:1485283.

    Article  Google Scholar 

  • Umigai N, Murakami K, Ulit MV, Antonio LS, Shirotori M, Morikawa H, et al. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine. 2011;18:575–8.

    Article  CAS  PubMed  Google Scholar 

  • Wallin AK, Wattmo C, Minthon L. Galantamine treatment in Alzheimer’s disease: response and long-term outcome in a routine clinical setting. Neuropsychiatr Dis Treat. 2011;7:565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S-C, Tseng T-Y, Huang C-M, Tsai T-H. Gardenia herbal active constituents: applicable separation procedures. J Chromatogr B. 2004;812(1):193–202.

    Article  CAS  Google Scholar 

  • Wang X, Yuan B, Cheng B, Liu Y, Zhang B, Wang X, et al. Crocin alleviates myocardial ischemia/reperfusion-induced endoplasmic reticulum stress via regulation of miR-34a/Sirt1/Nrf2 pathway. Shock. 2019a;51(1):123–30.

    Article  PubMed  Google Scholar 

  • Wang W, He P, Zhao D, Ye L, Dai L, Zhang X, et al. Construction of Escherichia coli cell factories for crocin biosynthesis. Microb Cell Factories. 2019b;18(1):120.

    Article  Google Scholar 

  • Williams CD. Antioxidants and prevention of gastrointestinal cancers. Curr Opin Gastroenterol. 2013;29(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  • Xi L, Qian Z, Du P, Fu J. Pharmacokinetic properties of crocin (crocetin digentiobiose ester) following oral administration in rats. Phytomedicine. 2007;14(9):633–6.

    Article  CAS  PubMed  Google Scholar 

  • Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Gong Z, Yu W, Gao L, He S, Qian Z. Increased expression ratio of Bcl-2/Bax is associated with crocin-mediated apoptosis in bovine aortic endothelial cells. Basic Clin Pharmacol Toxicol. 2007;100(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Liu BB, Qian XD, Li LQ, Cao HB, Guo QS, et al. Crocin induces autophagic apoptosis in hepatocellular carcinoma by inhibiting Akt/mTOR activity. Onco Targets Ther. 2018;11:2017–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yousefsani BS, Mehri S, Pourahmad J, Hosseinzadeh H. Protective effect of crocin against mitochondrial damage and memory deficit induced by beta-amyloid in the hippocampus of rats. Iran J Pharm Res. 2021;20(2):79–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zareena AV, Variyar PS, Gholap AS, Bongirwar DR. Chemical investigation of gamma-irradiated saffron (Crocus sativus L.). J Agric Food Chem. 2001;49(2):687–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Qian ZY, Han XY, Chen Z, Yan JL, Hamid A. Comparison of the effects of crocetin and crocin on myocardial injury in rats. Chin J Nat Med. 2009;7(3):223–7.

    Article  CAS  Google Scholar 

  • Zhang Y, LiuL JX, Lin L, Li Q. Pharmacokinetics of crocin-1 after oral administration in rats. J Chin Pharm Sci. 2012;47:136–40.

    CAS  Google Scholar 

  • Zhang Y, Fei F, Zhen L, Zhu X, Wang J, Li S, et al. Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. J Chromatogr B. 2017;1044–1045:1–7.

    Google Scholar 

  • Zhang A, Shen Y, Cen M, Hong X, Shao Q, Chen Y, et al. Polysaccharide and crocin contents, and antioxidant activity of saffron from different origins. Ind Crop Prod. 2019;133:111–7.

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu M, Krishna Mohan S, Hao Z. Crocin treatment promotes the oxidative stress and apoptosis in human thyroid cancer cells FTC-133 through the inhibition of STAT/JAK signaling pathway. J Biochem Mol Toxicol. 2021;35(1):e22608.

    Article  CAS  PubMed  Google Scholar 

  • Zou P, Xia Y, Ji J, Chen W, Zhang J, Chen X, et al. Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer. Cancer Lett. 2016;375(1):114–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiattisak Duangmal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karami, Z., Jafari, S.M., Duangmal, K. (2023). Crocins. In: Jafari, S.M., Rashidinejad, A., Simal-Gandara, J. (eds) Handbook of Food Bioactive Ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-81404-5_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81404-5_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81404-5

  • Online ISBN: 978-3-030-81404-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics