Skip to main content
Log in

Population pharmacokinetics of cyclosporine A based on NONMEM in Chinese allogeneic hematopoietic stem cell transplantation recipients

  • Original Paper
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

To set up a population pharmacokinetic (PPK) model of cyclosporine A (CsA) in Chinese allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients to provide reference for individualized medication in clinical practice. 281 trough plasma concentrations of CsA and covariates such as demographics, clinical laboratory values and coadministration were retrospectively collected from 73 allo-HSCT patients. Population modeling was performed using general model of NONMEM expressed by differential equation. Hematocrit (HCT), plasma albumin (ALB) level, and coadministration of itraconazole (ITR) were found to significantly affect the clearance of CsA (CL, L/h). The final model formula was: CL = 28.2 × [1 − 0.0263 × (HCT − 26.62)] × [1 − 0.0289 × (ALB − 37.63)] × [1 − 0.146 × ITR] (L/h); V = 1,080 (L); K a = 1.28 (h−1); F = 0.711. The interindividual variabilities for CL, V and F were 21.4, 41.5 and 6.07 %, respectively. The residual error was 0.00422 mg/L. The PPK model was validated to be effective and stable by bootstrap method. Clinical applications showed there was a good linear correlation between the predicted concentrations and the observed (y = 1.0095x + 0.0082, r = 0.9309, p < 0.0001). The PPK final model of CsA in Chinese allo-HSCT patients can be established using the NONMEM program which can be applied in clinical allo-HSCT practice when characteristics of patients fit in with those of subpopulation in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beauchesne PR, Chung NS, Wasan KM (2007) Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm 33(3):211–220

    Article  PubMed  CAS  Google Scholar 

  • Bourgoin H, Paintaud G, Chler M, Lebranchu Y, Autret-Leca E, Le-Guellec C (2005) Bayesian estimation of cyclosporin exposure for routine therapeutic drug monitoring in kidney transplant patients. Br J Clin Pharmacol 59(1):18–27

    Article  PubMed  Google Scholar 

  • Citterio F (2004) Evolution of the therapeutic drug monitoring of cyclosporine. Transpl Proc 36(2 Suppl):420S–425S

    Article  CAS  Google Scholar 

  • David-Neto E, Araujo LM, Brito ZM, Alves CF, Lemos FC, Yagyu EM, Nahas WC, Ianhez LE (2002) Sampling strategy to calculate the cyclosporin-A area under the time–concentration curve. Am J Transpl 2(6):546–550

    Article  CAS  Google Scholar 

  • del Mar Fernández De Gatta M, Santos-Buelga D, Domínguez-Gil A, García MJ (2002) Immunosuppressive therapy for paediatric transplant patients: pharmacokinetic considerations. Clin Pharmacokinet 41(2):115–135

    Article  PubMed  Google Scholar 

  • Du XL, Fu Q (2009) Population pharmacokinetic study of cyclosporine in patients with nephrotic syndrome. J Clin Pharmacol 49(7):782–788

    Article  CAS  Google Scholar 

  • Falck P, Midtvedt K, Vân Lê TT, Storehagen L, Holdaas H, Hartmann A, Asberg A (2009) A population pharmacokinetic model of ciclosporin applicable for assisting dose management of kidney transplant recipients. Clin Pharmacokinet 48(9):615–623

    Article  PubMed  CAS  Google Scholar 

  • Faulds D, Goa KL, Benfield P (1993) Cyclosporin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in immunoregulatory disorders. Drugs 45(6):953–1040

    Article  PubMed  CAS  Google Scholar 

  • Fukudo M (2007) Individualized dosage regimen of immunosuppressive drugs based on pharmacokinetic and pharmacodynamic analysis. Yakugaku Zasshi 127(7):1081–1089

    Article  PubMed  CAS  Google Scholar 

  • Ghalie R, Fitzsimmons WE, Weinstein A, Manson S, Kaizer H (1994) Cyclosporine monitoring improves graft-versus-host disease prophylaxis after bone marrow transplantation. Ann Pharmacother 28(3):379–383

    PubMed  CAS  Google Scholar 

  • Gibbs MA, Hosea NA (2003) Factors affecting the clinical development of cytochrome P450 3A substrates. Clin Pharmacokinet 42(11):969–984

    Article  PubMed  CAS  Google Scholar 

  • International Neoral Renal Transplantation Study Group (2002) Cyclosporine microemulsion (Neoral) absorption profiling and sparse-sample predictors during the first 3 months after renal transplantation. Am J Transpl 2(2):148–156

    Article  Google Scholar 

  • Jacobson PA, Ng J, Green KG, Rogosheske J, Brundage R (2003) Posttransplant day significantly influences pharmacokinetics of cyclosporine after hematopoietic stem cell transplantation. Biol Blood Marrow Transpl 9(5):304–311

    Article  CAS  Google Scholar 

  • Miller KB, Schenkein DP, Comenzo R, Erban JK, Fogaren T, Hirsch CA, Berkman E, Rabson A (1994) Adjusted-dose continuous-infusion cyclosporin A to prevent graft-versus-host disease following allogeneic bone marrow transplantation. Ann Hematol 68(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Parke J, Charles BG (1998) NONMEM population pharmacokinetic modeling of orally administered cyclosporine from routine drug monitoring data after heart transplantation. Ther Drug Monit 20(3):284–293

    Article  PubMed  CAS  Google Scholar 

  • Przepiorka D, Shapiro S, Schwinghammer TL, Bloom EJ, Rosenfeld CS, Shadduck RK, Venkataramanan R (1991) Cyclosporine and methylprednisolone after allogeneic marrow transplantation: association between low cyclosporine concentration and risk of acute graft-versus-host disease. Bone Marrow Transpl 7(6):461–465

    CAS  Google Scholar 

  • Rosenbaum SE, Baheti G, Trull AK, Akhlaghi F (2005) Population pharmacokinetics of cyclosporine in cardiopulmonary transplant recipients. Ther Drug Monit 27(2):116–122

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL (1985) Pharmacokinetic parameter estimates from several least squares procedures: superiority of extended least squares. J Pharmacokinet Biopharm 13(2):185–201

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Rosenberg B, Marathe W (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5(5):445–479

    PubMed  CAS  Google Scholar 

  • Sun B, Li XY, Gao JW, Rui JZ, Guo YK, Peng ZH, Liu GL (2010) Population pharmacokinetic study of cyclosporine based on NONMEM in Chinese liver transplant recipients. Ther Drug Monit 32(6):715–722

    Article  PubMed  CAS  Google Scholar 

  • Willemze AJ, Cremers SC, Schoemaker RC, Lankester AC, den Hartigh J, Burggraaf J, Vossen JM (2008) Ciclosporin kinetics in children after stem cell transplantation. Br J Clin Pharmacol 66(4):539–545

    Article  PubMed  CAS  Google Scholar 

  • Wu KH, Cui YM, Guo JF, Zhou Y, Zhai SD, Cui FD, Lu W (2005) Population pharmacokinetics of cyclosporine in clinical renal transplant patients. Drug Metab Dispos 33(9):1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Yin OQP, Lau SK, Chow MSS (2006) Population pharmacokinetics of cyclosporine in Chinese cardiac transplant recipients. Pharmacotherapy 26(6):790–797

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Dong Li.

Additional information

This work was supported by the Natural Science Foundation of PLA, China [Grant 06MA024].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Gao, Y., Cheng, XL. et al. Population pharmacokinetics of cyclosporine A based on NONMEM in Chinese allogeneic hematopoietic stem cell transplantation recipients. Eur J Drug Metab Pharmacokinet 37, 271–278 (2012). https://doi.org/10.1007/s13318-012-0087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-012-0087-8

Keywords

Navigation