Skip to main content
Log in

Population pharmacokinetics of cyclosporine A in Japanese renal transplant patients: comprehensive analysis in a single center

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cyclosporine A (CyA), a potent immunosuppressive agent used in renal transplantation, has a narrow therapeutic window and a large variability in blood concentrations. This study aimed to develop a population pharmacokinetic (PPK) model of CyA in living-donor renal transplant patients at a single center and identify factors influencing CyA pharmacokinetics (PK).

Methods

A total of 660 points (preoperative) and 4785 points (postoperative) of blood concentration data from 98 patients who underwent renal transplantation were used. Pre- and postoperative CyA model structure and PPK parameters were separately estimated with a non-linear mixed-effect model, and subsequently, covariate analysis of postoperative data were comprehensively estimated, including preoperative PK parameters.

Results

A two-compartment model with first-order absorption and absorption lag time was selected in this study. Aspartate aminotransferase, body surface area (BSA), pretransplant area under the whole blood concentration–time curve/dose, and postoperative days were identified as the covariates on oral clearance. BSA was selected as a covariate of the distribution volume of the central compartment. In addition, diabetes mellitus was selected as a covariate of the first-order absorption rate.

Conclusions

This PPK study used the largest number of blood concentration data among previous reports of living-donor renal transplant patients. Moreover, all patients received the same immunosuppressive regimen in a single center. Therefore, the validity of the selected covariates is reliable with high precision. The developed PPK model and selected covariates provide useful information about factors influencing CyA PK and greatly contributes to the identification of the most suitable dosing regimen for CyA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eisen HJ, Hobbs RE, Davis SF et al (2001) Safety, tolerability, and efficacy of cyclosporine microemulsion in heart transplant recipients: a randomized, multicenter, double-blind comparison with the oil-based formulation of cyclosporine—results at 24 months after transplantation. Transplantation 71:70–78

    Article  CAS  PubMed  Google Scholar 

  2. MacDonald A (2001) Improving tolerability of immunosuppressive regimens. Transplantation 72:S105–S112

    CAS  PubMed  Google Scholar 

  3. Kahan BD, Grevel J (1988) Optimization of cyclosporine therapy in renal transplantation by a pharmacokinetic strategy. Transplantation 46:631–644

    Article  CAS  PubMed  Google Scholar 

  4. Burke JF Jr, Pirsch JD, Ramos EL, Salomon DR, Stablein DM, Van Buren DH, West JC (1994) Long-term efficacy and safety of cyclosporine in renal-transplant recipients. N Engl J Med 331:358–363. doi:10.1056/NEJM199408113310604

    Article  PubMed  Google Scholar 

  5. Fahr A (1993) Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet 24:472–495

    Article  CAS  PubMed  Google Scholar 

  6. Wacke R, Rohde B, Engel G, Kundt G, Hehl EM, Bast R, Seiter H, Drewelow B (2000) Comparison of several approaches of therapeutic drug monitoring of cyclosporin A based on individual pharmacokinetics. Eur J Clin Pharmacol 56:43–48

    Article  CAS  PubMed  Google Scholar 

  7. Remuzzi G, Perico N (1995) Cyclosporine-induced renal dysfunction in experimental animals and humans. Kidney Int Suppl 52:S70–S74

    CAS  PubMed  Google Scholar 

  8. Yee GC, Self SG, McGuire TR, Carlin J, Sanders JE, Deeg HJ (1988) Serum cyclosporine concentration and risk of acute graft-versus-host disease after allogeneic marrow transplantation. N Engl J Med 319:65–70. doi:10.1056/NEJM198807143190201

    Article  CAS  PubMed  Google Scholar 

  9. Billaud EM (2005) C2 versus C0 cyclosporine monitoring: still not the end. Transplantation 80:542

    Article  PubMed  Google Scholar 

  10. Knight SR, Morris PJ (2007) The clinical benefits of cyclosporine C2-level monitoring: a systematic review. Transplantation 83:1525–1535. doi:10.1097/01.tp.0000268306.41196.2c

    Article  CAS  PubMed  Google Scholar 

  11. Sheiner LB (1984) The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev 15:153–171. doi:10.3109/03602538409015063

    Article  CAS  PubMed  Google Scholar 

  12. Thomson AH, Whiting B (1992) Bayesian parameter estimation and population pharmacokinetics. Clin Pharmacokinet 22:447–467. doi:10.2165/00003088-199222060-00004

    Article  CAS  PubMed  Google Scholar 

  13. Han K, Pillai VC, Venkataramanan R (2013) Population pharmacokinetics of cyclosporine in transplant recipients. AAPS J 15:901–912. doi:10.1208/s12248-013-9500-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu KH, Cui YM, Guo JF, Zhou Y, Zhai SD, Cui FD, Lu W (2005) Population pharmacokinetics of cyclosporine in clinical renal transplant patients. Drug Metab Dispos 33:1268–1275. doi:10.1124/dmd.105.004358

    Article  CAS  PubMed  Google Scholar 

  15. Chen B, Zhang W, Gu Z, Li J, Zhang Y, Cai W (2011) Population pharmacokinetic study of cyclosporine in Chinese renal transplant recipients. Eur J Clin Pharmacol 67:601–612. doi:10.1007/s00228-010-0959-2

    Article  CAS  PubMed  Google Scholar 

  16. Irtan S, Saint-Marcoux F, Rousseau A, Zhang D, Leroy V, Marquet P, Jacqz-Aigrain E (2007) Population pharmacokinetics and bayesian estimator of cyclosporine in pediatric renal transplant patients. Ther Drug Monit 29:96–102. doi:10.1097/FTD.0b013e3180310f9d

    Article  CAS  PubMed  Google Scholar 

  17. The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). http://www.ich.org. Accessed 12 November 2016

  18. Kokuhu T, Fukushima K, Ushigome H, Yoshimura N, Sugioka N (2013) Dose adjustment strategy of cyclosporine A in renal transplant patients: evaluation of anthropometric parameters for dose adjustment and C0 vs. C2 monitoring in Japan, 2001-2010. Int J Med Sci 10:1665–1673. doi:10.7150/ijms.6727 eCollection 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yanaga Y, Awai K, Nakaura T, Oda S, Funama Y, Bae KT, Yamashita Y (2009) Effect of contrast injection protocols with dose adjusted to the estimated lean patient body weight on aortic enhancement at CT angiography. AJR Am J Roentgenol 192:1071–1078. doi:10.2214/AJR.08.1407

    Article  PubMed  Google Scholar 

  20. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. Nutrition 5:303–311

    PubMed  Google Scholar 

  21. Nishi Y (2001) Neoral (Cyclosporin microemulsion preconcentrate): pharmacokinetics, pharmacodynamics and its improved clinical outcome. Nihon Yakurigaku Zasshi 118:107–115

    Article  CAS  PubMed  Google Scholar 

  22. Maurer G (1985) Metab cyclosporine Transplant Proc 17:19–26

    CAS  Google Scholar 

  23. Gwilt PR, Nahhas RR, Tracewell WG (1991) The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet 20:477–490. doi:10.2165/00003088-199120060-00004

    Article  CAS  PubMed  Google Scholar 

  24. Lee JH, Yang SH, Oh JM, Lee MG (2010) Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 62:1–23. doi:10.1211/jpp.62.01.0001

    Article  CAS  PubMed  Google Scholar 

  25. Nawa A, Fujita-Hamabe W, Tokuyama S (2011) Altered intestinal P-glycoprotein expression levels in a monosodium glutamate-induced obese mouse model. Life Sci 89:834–838. doi:10.1016/j.lfs.2011.08.019

    Article  CAS  PubMed  Google Scholar 

  26. Halliday D, Hesp R, Stalley SF, Warwick P, Altman DG, Garrow JS (1979) Resting metabolic rate, weight, surface area and body composition in obese women. Int J Obes 3:1–6

    CAS  PubMed  Google Scholar 

  27. Nawaratne S, Brien JE, Seeman E, Fabiny R, Zalcberg J, Cosolo W, Angus P, Morgan DJ (1998) Relationships among liver and kidney volumes, lean body mass and drug clearance. Br J Clin Pharmacol 46:447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner O, Schreier E, Heitz F, Maurer G (1987) Tissue distribution, disposition, and metabolism of cyclosporine in rats. Drug Metab Dispos 15:377–383

    CAS  PubMed  Google Scholar 

  29. Sardinha LB, Silva AM, Minderico CS, Teixeira PJ (2006) Effect of body surface area calculations on body fat estimates in non-obese and obese subjects. Physiol Meas 27:1197–1209. doi:10.1088/0967-3334/27/11/012

    Article  PubMed  Google Scholar 

  30. Zhou Y, Sheng XY, Xu JY, Bi SS, Lu W, Cui YM (2013) Population pharmacokinetic study of cyclosporine in the hematopoietic stem cell transplant recipients. Int J Clin Pharmacol Ther 51:568–575. doi:10.5414/CP201815

    Article  CAS  PubMed  Google Scholar 

  31. Konishi H, Sumi M, Shibata N, Takada K, Minouchi T, Yamaji A (2004) Influence of intravenous methylprednisolone pulse treatment on the disposition of ciclosporin and hepatic CYP3A activity in rats. J Pharm Pharmacol 56:477–483. doi:10.1211/0022357023114

    Article  CAS  PubMed  Google Scholar 

  32. Press RR, Ploeger BA, den Hartigh J, van der Straaten T, van Pelt H, Danhof M, de Fijter H, Guchelaar HJ (2010) Explaining variability in ciclosporin exposure in adult kidney transplant recipients. Eur J Clin Pharmacol 66:579–590. doi:10.1007/s00228-010-0810-9d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Nagai Memorial Research Scholarship from the Pharmaceutical Society of Japan (AO).

Author information

Authors and Affiliations

Authors

Contributions

AO, HU, Tadashi K, Takatoshi K, KF, NY, and Nobuyuki S equally contributed to the conception, design of the research, and acquisition of the data; AO, MK, AM, HK, AN, Nobuhito S, and KF contributed to the analysis of the data. All the authors critically revised the manuscript, read, and approved the final manuscript and agree to be fully accountable for ensuring the integrity and accuracy of the work.

Corresponding author

Correspondence to Nobuyuki Sugioka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, A., Ushigome, H., Kanamori, M. et al. Population pharmacokinetics of cyclosporine A in Japanese renal transplant patients: comprehensive analysis in a single center. Eur J Clin Pharmacol 73, 1111–1119 (2017). https://doi.org/10.1007/s00228-017-2279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-017-2279-2

Keywords

Navigation