Skip to main content

Advertisement

Log in

Hexavalent Vaccines in India: Current Status

  • Drug Review
  • Published:
Indian Pediatrics Aims and scope Submit manuscript

Abstract

Hexavalent vaccines containing diphtheria, tetanus, pertussis, Haemophilus influenzae type b, poliomyelitis, and hepatitis B virus antigens have the potential to be used for the primary series in India (6, 10, 14 weeks of age) and the toddler booster dose. Three hexavalent vaccines are available in India: DTwP-Hib/HepB-IPV (wP-hexa), DTaP-IPV-HB-PRP~T(2aP-hexa), and DTaP-HBV-IPV/Hib (3aP-hexa). In the three published phase-3 Indian studies, pertussis ‘vaccine response’ rates 1 month after a 6-10-14-week primary series were 68.4-75.7% for wP-hexa, 93.8-99.3% for 2aP-hexa, and 97.0-100% for 3aP-hexa; seroprotection rates for the other five antigens were 88.2-100%, 49.6-100%, and 98.6-100%, respectively. Studies outside India show: good immunogenicity/safety after boosting dosing; immune persistence to age 4.5 years (2aP-hexa), 7–9 years (3aP-hexa) (all antigens), and 9–10 and 14–15 years, respectively (hepatitis B); and successful co-administration with other vaccines. Hexavalent vaccines could reduce the number of injections, simplify vaccination schedules, and improve compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skibinski DA, Baudner BC, Singh M, O’Hagan DT. Combination vaccines. J Glob Infect Dis. 2011;3:63–72.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Advisory Committee on Immunization Practices (ACIP). Combination vaccines for childhood immunization. MMWR Recomm Rep. 1999;48:1–14.

    Google Scholar 

  3. Maman K, Zollner Y, Greco D, Duru G, Sendyona S, Remy V. The value of childhood combination vaccines: From beliefs to evidence. Hum Vaccin Immunother. 2015;11:2132–41.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Obando-Pacheco P, Rivero-Calle I, Gomez-Rial J, Rodriguez-Tenreiro Sanchez C, Martinon-Torres F. New perspectives for hexavalent vaccines. Vaccine. 2018;36:5485–94.

    Article  CAS  PubMed  Google Scholar 

  5. Orsi A, Azzari C, Bozzola E, Chiamenti G, Chirico G, Esposito S, et al. Hexavalent vaccines: characteristics of available products and practical considerations from a panel of Italian experts. J Prev Med Hyg. 2018;59:E107–E19.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. National Health Mission. Current UIP Schedule. [Available from: http://www.nhm.gov.in/nrhmcomponents/rmnch-a/immunization/manual-formats.html. Accessed January 31, 2019.

    Google Scholar 

  7. Balasubramanian S, Shah A, Pemde HK, Chatterjee P, Shivananda S, Guduru VK, et al. Indian Academy of Pediatrics (IAP) Advisory Committee on Vaccines and Immunization Practices (ACVIP) Recommended Immunization Schedule (2018-19) and Update on Immunization for Children Aged 0 Through 18 Years. Indian Pediatr. 2018;55:1066–74.

    Article  CAS  PubMed  Google Scholar 

  8. World Health Organization. Replacing Trivalent OPV with Bivalent OPV. 2015. Available from: https://www.who.int/immunization/diseases/poliomyelitis/endgame_objective2/oral_polio_vaccine/en/. Accessed May 29, 2019.

    Google Scholar 

  9. Haldar P, Agrawal P. India’s preparedness for introduction of IPV and switch from tOPV to bOPV. Indian Pediatr. 2016;53:S44–S9.

    PubMed  Google Scholar 

  10. Kumar A, Basu S, Vashishtha V, Choudhury P. Burden of rotavirus diarrhea in under five indian children. Indian Pediatr. 2016;53:607–17.

    Article  PubMed  Google Scholar 

  11. World Health Organization. Introduction of Inactivated Polio Vaccine (IPV) in Routine Immunizations. Available from: https://www.who.int/immunization/diseases/poliomyelitis/inactivated_polio_vaccine/ipv_operational_manual.pdf. Accessed January 30, 2019.

    Google Scholar 

  12. World Health Organization. Update on short term supply constraints for IPV. 2015. Available from: https://www.who.int/immunization/diseases/poliomyelitis/endgame_objective2/inactivated_polio_vaccine/IPVSupplyInformationNote-June2015_FINAL.pdf. Accessed January 30, 2019.

    Google Scholar 

  13. Bahl S, Bhatnagar P, Sutter RW, Roesel S, Zaffran M. Global polio eradication - way ahead. Indian J Pediatr. 2018;85:124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  14. World Health Organization. Pertussis vaccines: WHO position paper - September 2015. Releve epidemiologique hebdomadaire. 2015;90:433–58.

    Google Scholar 

  15. Jefferson T, Rudin M, DiPietrantonj C. Systematic review of the effects of pertussis vaccines in children. Vaccine. 2003;21:2003–14.

    Article  CAS  PubMed  Google Scholar 

  16. World Health Organization. Observed Rate of Vaccine Reactions: Diphtheria, Pertussis, Tetanus Vaccines. 2014. Available from: https://www.who.int/vaccine_safety/initiative/tools/DTP_vaccine_rates_information_sheet.pdf?ua=1. Accessed January 30, 2019.

    Google Scholar 

  17. Zhang L, Prietsch SO, Axelsson I, Halperin SA. Acellular vaccines for preventing whooping cough in children. Cochrane Database Syst Rev. 2014:CD001478.

    Google Scholar 

  18. World Health Organization. Pertussis vaccines: WHO position paper - August 2015. Releve Epidemiologique Hebdomadaire. 2015;90:433–60.

    Google Scholar 

  19. Dowling DJ. Recent advances in the discovery and delivery of TLR7/8 agonists as vaccine adjuvants. Immuno Horizons. 2018;2:185–97.

    Article  CAS  Google Scholar 

  20. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nature Medicine. 2013;19:1597.

    Article  CAS  PubMed  Google Scholar 

  21. Misiak A, Leuzzi R, Allen AC, Galletti B, Baudner BC, D’Oro U, et al. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and protective immunity in a mouse model. Vaccine. 2017;35:5256–63.

    Article  CAS  PubMed  Google Scholar 

  22. Cellès MDd, Magpantay FMG, King AA, Rohani P. The pertussis enigma: reconciling epidemiology, immunology and evolution. Proc Biol Sci. 2016;283:20152309.

    Article  CAS  Google Scholar 

  23. Fernandes EG, Sartori AMC, de Soárez PC, Carvalhanas TRMP, Rodrigues M, Novaes HMDJBID. Challenges of interpreting epidemiologic surveillance pertussis data with changing diagnostic and immunization practices: The case of the state of São Paulo, Brazil. BMC Infect Dis. 2018;18:126.

    Article  PubMed  PubMed Central  Google Scholar 

  24. WHO SAGE pertussis working group. Background paper. Available from: https://www.who.int/immunization/sage/meetings/2014/april/1_Pertussis_background_FINAL4_web.pdf?ua=. Accessed February 15, 2019.

    Google Scholar 

  25. Diavatopoulos DA, Mills KHG, Kester KE, Kampmann B, Silerova M, Heininger U, et al. PERISCOPE: road towards effective control of pertussis. Lancet Infect Dis. 2019;19:e179–e86.

    Article  Google Scholar 

  26. Chitkara AJ, Vashistha VM. Pertussis outbreaks in the developed world: Are acellular pertussis vaccines ineffective? Indian Pediatr. 2013;50:1109–12.

    Article  CAS  PubMed  Google Scholar 

  27. Domenech de Celles M, Magpantay FM, King AA, Rohani P. The pertussis enigma: reconciling epidemiology, immunology and evolution. Proc Biol Sci. 2016;283(1822).

    Google Scholar 

  28. Vashishtha VM, Bansal CP, Gupta SG. Pertussis vaccines: Position paper of Indian Academy of Pediatrics (IAP). Indian Pediatr. 2013;50:1001–9.

    Article  PubMed  Google Scholar 

  29. Patterson J, Kagina BM, Gold M, Hussey GD, Muloiwa R. Comparison of adverse events following immunisation with acellular and whole-cell pertussis vaccines: A systematic review. Vaccine. 2018;36:6007–16.

    Article  CAS  PubMed  Google Scholar 

  30. Dolhain J, Fierens F, De Moerlooze L, Nissen M, Janssens W, Mukherjee P. Integration of hepatitis B vaccine (HBV) and DTPa-IPV/Hib immunization schedules: overview of clinical experience with GSK HBV vaccine, DTPa-IPV/Hib and DTPa-HBV-IPV/Hib in the Asian region. 2017. Available from: https://wspid2017.kenes.com/Documents/WSPID17_-all%20abstracts.pdf. Accessed August 7, 2018.

    Google Scholar 

  31. Gatchalian S, Bravo L, Cadrona-Carlos J, Espos R, Fortunato T, Hernandez-Tanueco V, et al. A hexavalent DTPa-HBV-IPV/Hib vaccine administered to Filipino infants at 6, 10 and 14 weeks and 12–15 months of age; importance of the birth dose of HBV. Philipp J Pediatr. 2007;56:153–61.

    Google Scholar 

  32. Madhi SA, Koen A, Cutland C, Groome M, Santos-Lima E. Antibody persistence and booster vaccination of a fully liquid hexavalent vaccine coadministered with measles/mumps/rubella and varicella vaccines at 15–18 months of age in healthy South African infants. Pediatr Infect Dis J. 2013;32:889–97.

    Article  PubMed  Google Scholar 

  33. Panacea Biotec. Purified Diphtheria Toxoid, Purified Tetanus Toxoid, Whole cell Pertussis, Recombinant Hepatitis B, Haemophilus influenzae Type b Conjugate and Inactivated Poliomyelitis Trivalent Vaccine (Adsorbed) [EasySix]. Available from: https://media.bestonhealth. Summary of Product Characteristics. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Medicine_for_use_outside_EU/2012/12/WC500135727.pdf. Accessed June 11, 2018

  34. GlaxoSmithKline UK. Infanrix hexa Summary of Product Characteristics. Availalble from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000296/human_med_000833.jsp&mid=WC0b01ac058001d124. Accessed June 11, 2018.

    Google Scholar 

  35. GSK. Prescribing Information (Infanrix hexa). Available from: http://india-pharma.gsk.com/en-in/products/prescribing-information/. Accessed: August 14, 2018.

    Google Scholar 

  36. Mohanty L, Sharma S, Behera B, Panwar S, Paliwal C, Gupta A, et al. A randomized, open label trial to evaluate and compare the immunogenicity and safety of a novel liquid hexavalent DTwP-Hib/Hep B-IPV (EasySix™) to licensed combination vaccines in healthy infants. Vaccine. 2018;36:2378–84.

    Article  CAS  PubMed  Google Scholar 

  37. Chhatwal J, Lalwani S, Vidor E. Immunogenicity and safety of a liquid hexavalent vaccine in Indian infants. Indian Pediatr. 2017;54:15–20.

    Article  PubMed  Google Scholar 

  38. Lalwani SK, Agarkhedkar S, Sundaram B, Mahantashetti NS, Malshe N, Agarkhedkar S, et al. Immunogenicity and safety of 3-dose primary vaccination with combined DTPa-HBV-IPV/Hib in Indian infants. Hum Vaccin Immunother. 2017;13:120–7.

    Article  PubMed  Google Scholar 

  39. GSK. Immunogenicity and safety study of GlaxoSmithKline Biologicals’ Infanrix hexa™ vaccine in healthy infants in India. Infanrix hexaTM (DTPa-HBVIPV/Hib): GlaxoSmithKline (GSK) Biologicals’ combined diphtheria-tetanus-acellular pertussis-hepatitis Binactivated poliovirus and Haemophilus influenzae (H. influenzae) Type b vaccine. 2016. Available from: https://www.gsk-clinicalstudyregister.com/files2/111157%20-%20Clinical-Study-Result-Summary.pdf. Accessed June 26, 2018.

    Google Scholar 

  40. World Health Organization. India: WHO and UNICEF estimates of national immunization coverage: 2016 revision. 2017. Available from: http://www.who.int/immunization/monitoring_surveillance/data/ind.pdf. Accessed September 11, 2017.

    Google Scholar 

  41. Madhi SA, Mitha I, Cutland C, Groome M, Santos-Lima E. Immunogenicity and safety of an investigational fully liquid hexavalent combination vaccine versus licensed combination vaccines at 6, 10, and 14 weeks of age in healthy South African infants. Pediatr Infect Dis J. 2011;30:e68–74.

    Article  PubMed  Google Scholar 

  42. Simondon F, Preziosi MP, Yam A, Kane CT, Chabirand L, Iteman I, et al. A randomized double-blind trial comparing a two-component acellular to a whole-cell pertussis vaccine in Senegal. Vaccine. 1997;15:1606–12.

    Article  CAS  PubMed  Google Scholar 

  43. Schmitt HJ, von Konig CH, Neiss A, Bogaerts H, Bock HL, Schulte-Wissermann H, et al. Efficacy of acellular pertussis vaccine in early childhood after household exposure. JAMA. 1996;275:37–41.

    Article  CAS  PubMed  Google Scholar 

  44. Salmaso S, Mastrantonio P, Tozzi AE, Stefanelli P, Anemona A, Ciofi degli Atti ML, et al. Sustained efficacy during the first 6 years of life of 3-component acellular pertussis vaccines administered in infancy: the Italian experience. Pediatrics. 2001;108:E81.

    Article  CAS  PubMed  Google Scholar 

  45. Hexaxim. Summary of Product Characteristics. Sanofi Pasteur SA. 2012;Available from: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/document_listing/document_listing_000352.jsp&mid=. Accessed Jan 2018.

    Google Scholar 

  46. Madhi SA, Lopez P, Zambrano B, Jordanov E, B’Chir S, Noriega F, et al. Antibody persistence in pre-school children after hexavalent vaccine infant primary and booster administration. Hum Vaccin Immunother. 2018: 1–11.

    Google Scholar 

  47. Zinke M, Disselhoff J, Gartner B, Jacquet JM. Immunological persistence in 4–6 and 7–9 year olds previously vaccinated in infancy with hexavalent DTPa- HBV-IPV/Hib. Human vaccines. 2010;6:189–93.

    Article  PubMed  Google Scholar 

  48. Kosalaraksa P, Chokephaibulkit K, Benjaponpitak S, Pancharoen C, Chuenkitmongkol S, B’Chir S, et al. Persistence of hepatitis B immune memory until 9–10 years of age following hepatitis B vaccination at birth and DTaPIPV-HB-PRP approximately T vaccination at 2, 4 and 6 months. Hum Vaccin Immunother. 2018;14:1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schwarz TF, Behre U, Adelt T, Donner M, Suryakiran PV, Janssens W, et al. Long-term antibody persistence against hepatitis B in adolescents 14–15-years of age vaccinated with 4 doses of hexavalent DTPa-HBV-IPV/Hib vaccine in infancy. Hum Vaccin Immunother. 2019;15:235–41.

    Article  PubMed  Google Scholar 

  50. Knuf M, Habermehl P, Cimino C, Petersen G, Schmitt HJ. Immunogenicity, reactogenicity and safety of a 7-valent pneumococcal conjugate vaccine (PCV7) concurrently administered with a DTPa-HBV-IPV/Hib combination vaccine in healthy infants. Vaccine. 2006;24:4727–36.

    Article  CAS  PubMed  Google Scholar 

  51. Esposito S, Tansey S, Thompson A, Razmpour A, Liang J, Jones TR, et al. Safety and immunogenicity of a 13-valent pneumococcal conjugate vaccine compared to those of a 7- valent pneumococcal conjugate vaccine given as a threedose series with routine vaccines in healthy infants and toddlers. Clin Vaccine Immunol. 2010;17:1017–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vesikari T, Karvonen A, Prymula R, Schuster V, Tejedor JC, Thollot F, et al. Immunogenicity and safety of the human rotavirus vaccine Rotarix co-administered with routine infant vaccines following the vaccination schedules in Europe. Vaccine. 2010;28:5272–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zepp F, Behre U, Kindler K, Laakmann KH, Pankow-Culot H, Mannhardt-Laakmann W, et al. Immunogenicity and safety of a tetravalent measles-mumps-rubellavaricella vaccine co-administered with a booster dose of a combined diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliovirus-Haemophilus influenzae type b conjugate vaccine in healthy children aged 12–23 months. Eur J Pediatr. 2007;166:857–64.

    Article  PubMed  Google Scholar 

  54. Kiely M, Billard MN, Toth E, Zafack JG, Landry M, Skowronski DM, et al. Investigation of an increase in large local reactions following vaccine schedule change to include DTaP-HB-IPV-Hib (Infanrix-hexa(R)) and MMRV (ProQuad(R)) at 18months of age. Vaccine. 2018;36:6688–94.

    Article  PubMed  Google Scholar 

  55. Tejedor JC, Omenaca F, Garcia-Sicilia J, Verdaguer J, Van Esso D, Esporrin C, et al. Immunogenicity and reactogenicity of a three-dose primary vaccination course with a combined diphtheria-tetanus-acellular pertussishepatitis B-inactivated polio-Haemophilus influenzae type b vaccine coadministered with a meningococcal C conjugate vaccine. Pediatr Infect Dis J. 2004;23:1109–15.

    PubMed  Google Scholar 

  56. Tejedor JC, Moro M, Ruiz-Contreras J, Castro J, Gomez-Campdera JA, Navarro ML, et al. Immunogenicity and reactogenicity of primary immunization with a hexavalent diphtheria-tetanus-acellular pertussis-hepatitis Binactivated polio-Haemophilus influenzae type B vaccine coadministered with two doses of a meningococcal Ctetanus toxoid conjugate vaccine. Pediatr Infect Dis J. 2006;25:713–20.

    Article  PubMed  Google Scholar 

  57. Knuf M, Pantazi-Chatzikonstantinou A, Pfletschinger U, Tichmann-Schumann I, Maurer H, Maurer L, et al. An investigational tetravalent meningococcal serogroups A, C, W-135 and Y-tetanus toxoid conjugate vaccine coadministered with Infanrix hexa is immunogenic, with an acceptable safety profile in 12–23-month-old children. Vaccine. 2011;29:4264–73.

    Article  CAS  PubMed  Google Scholar 

  58. Vesikari T, Esposito S, Prymula R, Ypma E, Kohl I, Toneatto D, et al. Immunogenicity and safety of an investigational multicomponent, recombinant, meningococcal serogroup B vaccine (4CMenB) administered concomitantly with routine infant and child vaccinations: results of two randomised trials. Lancet. 2013;381:825–35.

    Article  CAS  PubMed  Google Scholar 

  59. Prymula R, Esposito S, Zuccotti GV, Xie F, Toneatto D, Kohl I, et al. A phase 2 randomized controlled trial of a multicomponent meningococcal serogroup B vaccine (I). Hum Vaccin Immunother. 2014;10:1993–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gossger N, Snape MD, Yu LM, Finn A, Bona G, Esposito S, et al. Immunogenicity and tolerability of recombinant serogroup B meningococcal vaccine administered with or without routine infant vaccinations according to different immunization schedules: a randomized controlled trial. JAMA. 2012;307:573–82.

    Article  CAS  PubMed  Google Scholar 

  61. Prymula R, Kieninger D, Feroldi E, Jordanov E, B’Chir S, DaCosta X. Immunogenicity and Safety of Primary and Booster Vaccinations of a Fully Liquid DTaP-IPV-HBPRP- T Hexavalent Vaccine in Healthy Infants and Toddlers in Germany and the Czech Republic. Pediatr Infect Dis J. 2018:[Epub ahead of print].

    Google Scholar 

  62. Omenaca F, Vazquez L, Garcia-Corbeira P, Mesaros N, Hanssens L, Dolhain J, et al. Immunization of preterm infants with GSK’s hexavalent combined diphtheriatetanus- acellular pertussis-hepatitis B-inactivated poliovirus-Haemophilus influenzae type b conjugate vaccine: A review of safety and immunogenicity. Vaccine. 2018;36:986–96.

    Article  CAS  PubMed  Google Scholar 

  63. Public Health England. The Hexavalent DTaP/IPV/Hib/HepB Combination Vaccine. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/740422/Infanrix_hexa_training_slides.pdf. Accessed March 20, 2019.

    Google Scholar 

  64. ClinicalTrials.gov search. 2019. Available from:https://clinicaltrials.gov/ct2/results?term=Infanrix+hexa&lead=GlaxoSmithKline. Accessed May 31, 2019.

  65. EU Clinical Trials Register. 2019. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search?query=Infanrix+hexa+AND+GlaxoSmithKline+Biologicals. Accessed May 31, 2019.

  66. World Health Organization. Tetanus vaccines: WHO position paper - February 2017. Releve Epidemiologique Hebdomadaire. 2017;92:53–76.

    Google Scholar 

  67. World Health Organization. Haemophilus influenzae type b (Hib) Vaccination Position Paper - September 2013. Releve Epidemiologique Hebdomadaire. 2013;88:413–28.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Business & Decision Life Sciences platform for editorial assistance and manuscript coordination, on behalf of GSK. Thibaud André (Business & Decision Life Sciences) coordinated the manuscript development and provided editorial support. Jenny Lloyd (Compass Medical Communications Ltd.) provided writing support.

Funding

Funding: GlaxoSmithKline Biologicals SA took charge of all costs associated with the development and publication of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Contributors: All authors provided substantial intellectual and scientific input during manuscript development, critically reviewed the content, revised the manuscript, and approved the final version.

Corresponding author

Correspondence to Raunak Parikh.

Ethics declarations

Competing interests: AC: has received lecture fees and advisory board fees from Sanofi Pasteur and Abbott Vaccines; RP,AM,SK: are employees of the GSK group of companies; AM: has received shares from the GSK group of companies.

Additional information

Trademarks: Hexaxim is a trademark of Sanofi Pasteur; Imovax Polio is a trademark of Sanofi Pasteur India Pvt. Ltd.; Pentavac SD is a trademark of Serum Institute of India Ltd.; EasySix is a trademark of Panacea Biotec Ltd.; Infanrix hexa and Infanrix are trademarks of the GSK group of companies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitkara, A.J., Parikh, R., Mihalyi, A. et al. Hexavalent Vaccines in India: Current Status. Indian Pediatr 56, 939–950 (2019). https://doi.org/10.1007/s13312-019-1651-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13312-019-1651-y

Keywords

Navigation